Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1+x2)2−4x(1−x2)
= \(-\left(1-x^2\right)^2-4x\left(1-x^2\right)\)
đặt \(\left(1-x^2\right)\)= a
ta có :
- a . a - 4x .a
= a ( - a - 4x )
thay a = \(\left(1+x^2\right)\) ta có
\(\left(1+x^2\right)\left(1-x^2-4x\right)\)
phân tích tiếp nhé !
\(\left(1+x^2\right)^2-4x\left(1-x^2\right)=1+2x^{ }+x^4-4x+4x^3\)\(=\left(x^4+2x^3-x^2\right)+\left(2x^3+4x^2-2x\right)-x^2-2x+1=x^2\left(x^2+2x-1\right)+2x\left(x^2+x-1\right)-\left(x^2+2x-1\right)\)\(\left(x^2+2x-1\right)\left(x^2+2x-1\right)=\left(x^2+2x-1\right)^2\)
g ) \(4x^2\left(x-2y\right)-\left(4x+1\right)\left(2y-x\right)\)
\(=4x^2\left(x-2y\right)+\left(4x+1\right)\left(x-2y\right)\)
\(=\left(4x^2+4x+1\right)\left(x-2y\right)\)
\(=\left(2x+1\right)^2\left(x-2y\right)\)
h ) \(x^2-ax^2-y+ay+cx^2-cy\)
\(=x^2\left(1-a+c\right)-y\left(1-a+c\right)\)
\(=\left(x^2-y\right)\left(1-a+c\right)\)
a,(x-y)^2-2(x+y)+1 b, x^2-y^2+4x+4 c, 4x^2-y^2+8(y-2)
=(x-y-1)^2 =(x^2+4x+4)-y^2 =4x^2-y^2+8y-16
=(x+2)^2-y^2 =4x^2-(y^2-8y+16)
=(x+2-y)(x+2+y) =4x^2-(y-4)^2
a) (x+y)2-2(x+y)+1=(x+y-1)2
b) x2-y2+4x+4 = (x2+4x+4)-y2=(x+2)2-y2=(x+y+2)(x-y+2)
c)4x2-y2+8(y-2) = 4x2-(y2-8y+16) = (2x)2-(y-4)2=(2x+y-4)(2x-y+4)
d)x3-2x2+2x-4 = x2(x-2)+2(x-2) = (x-2)(x2+2)
e)xy-4+2x-2y=x(y+2) - 2(y+2) = (x-2)(y+2)
x2 + y2 - 3x - 3y + 2xy
= ( x2 + 2xy + y2 ) - ( 3x + 3y )
= ( x + y )2 - 3( x + y )
= ( x + y )( x + y - 3 )
b) ( x2 - 4x )2 - 2( x - 2 )2 - 7
= ( x2 - 4x )2 - 2( x2 - 4x + 4 ) - 7 (*)
Đặt t = x2 - 4x
(*) <=> t2 - 2( t + 4 ) - 7
= t2 - 2t - 8 - 7
= t2 - 2t - 15
= t2 + 3t - 5t - 15
= t( t + 3 ) - 5( t + 3 )
= ( t + 3 )( t - 5 )
= ( x2 - 4x + 3 )( x2 - 4x - 5 )
= ( x2 - x - 3x + 3 )( x2 + x - 5x - 5 )
= [ x( x - 1 ) - 3( x - 1 ) ][ x( x + 1 ) - 5( x + 1 ) ]
= ( x - 1 )( x - 3 )( x + 1 )( x - 5 )
a) Ta có: \(x^2+y^2-3x-3y+2xy\)
\(=\left[\left(x^2+y^2+2xy\right)-2\left(x+y\right)+1\right]-\left(x+y+1\right)\)
\(=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]-\left(x+y+1\right)\)
\(=\left(x+y-1\right)^2-\left(x+y+1\right)\)
\(=\left(x+y-1\right)^2-\left(\sqrt{x+y+1}\right)^2\)
\(=\left(x+y-1+\sqrt{x+y+1}\right)\left(x+y-1-\sqrt{x+y+1}\right)\)
\(4x^2\left(x+y\right)-x-y\)
\(=4x^2\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(4x^2-1\right)\)
\(=\left(x+y\right)\left(2x-1\right)\left(2x+1\right)\)
\(16ty^2+6xt-9t-tx^2\)
\(=t.\left(16y^2+6x-9-x^2\right)\)
\(=t.\left[\left(4y\right)^2-\left(x^2-2.x.3+3^2\right)\right]\)
\(=t.\left[\left(4y\right)^2-\left(x-3\right)^2\right]\)
\(=t.\left(4y-x+3\right)\left(4y+x-3\right)\)
\(x^2-9xy+20y^2\)
\(=\left(x^2-4xy\right)-\left(5xy-20y^2\right)\)
\(=x.\left(x-4y\right)-5y\left(x-4y\right)\)
\(=\left(x-4y\right)\left(x-5y\right)\)