Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu b nè : ta có x3 - x2 - 5x + 125 = x ^3 + 5* x^2 - 6x^2 - 30x + 25 x + 125 = x^2 (x+5 ) - 6x (x + 5) + 25 (x+5)
= (x+ 5 ) (x^2 - 6x + 25)
nha bạn
a) ( x-3y ) ( x + 1 )
b) ( x+y+5 ) ( x+y-5 )
c) ( x-5 ) ( x+2 )
Hk tốt
Đặt \(x^2+1=t\)
Ta có: \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2\)
\(=t^2+3xt+2t^2\)
\(=t^2+xt+2xt+2t^2\)
\(=t\left(t+x\right)+2x\left(t+x\right)\)
\(=\left(t+x\right)\left(t+2x\right)\)
\(=\left(x^2+1+x\right)\left(x^2+1+2x\right)\)
\(=\left(x^2+x+1\right)\left(x+1\right)^2\)
Chúc bạn học tốt
\(\left(x-2\right)^3-1=\left(x-2\right)\left[\left(x-3\right)^2+x-2\right]=\left(x-2\right)\left(x^2+5x+7\right)\)
\(\left(x+3y\right)^2-9y^2=x\left(x+6y\right)\)
\(\left(x+3\right)^2-\left(x-1\right)^2=4\left(2x+4\right)=8\left(x+2\right)\)
a) \(\left(x-2\right)^3-1=\left(x-2\right)^3-1^3=\left(x-2-1\right)\left[\left(x-2\right)^2+\left(x-2\right)\cdot1+1^2\right]\)\(=\left(x-3\right)\left(x^2-4x+4+x-2+1\right)\)
\(=\left(x-3\right)\left(x^2-3x+3\right)\)
b) \(\left(x+3y\right)^2-9y^2\)
\(=\left(x+3y\right)^2-\left(3y\right)^2\)
\(=\left(x+3y+3y\right)\left(x+3y-3y\right)\)
\(=x\left(x+6y\right)\)
c) \(\left(x+3\right)^2-\left(x-1\right)^2\)
\(=\left(x+3-x+1\right)\left(x+3+x-1\right)\)
\(=4\left(2x+2\right)\)
\(=8\left(x+1\right)\)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
a) \(^{x^4-y^4}\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left[\left(x-y\right).\left(x+y\right)\right].\left(x^2-y^2\right)\)
\(=\left(x-y\right).\left(x+y\right).\left(x^2-y^2\right)\)
c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)
\(=\left[\left(3x-2y\right)+\left(2x-3y\right)\right].\left[\left(3x-2y\right)-\left(2x-3y\right)\right]\)
\(=\left(3x-2y+2x-3y\right)\left(3x-2y-2x+3y\right)\)
b) \(x^2-3y^2\)
\(=\left(x-3y\right)\left(x+3y\right)\)
d) \(9\left(x-y\right)^2-4\left(x+y\right)^2\)
\(=9\left(x-y\right)^2+4\left(x-y\right)^2\)
\(=\left(x-y\right).\left(9+4\right)\)
\(=\left(x-y\right).13\)
\(=13\left(x-y\right)\)
f) \(x^3+27\)
\(=x^3+3^3\)
\(=\left(x+3\right)\left(x^2-x.3+3^2\right)\)
h) \(125x^3-1\)
\(=\left(5x\right)^3-1^3\)
\(=\left(5x-1\right)\left(5x^2+5x.1+1^2\right)\)
\(=\left(5x-1\right)\left(5x^2+5x+1\right)\)
\(a,x^4-y^4=\left(x^2+y^2\right)\left(x^2-y^2\right)=\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)\)
\(b,x^2-3y^2=\left(x+\sqrt{3}y\right)\left(x-\sqrt{3}y\right)\)
cn lại tg tự nha bn
a)
\(4x^2-9y^2+6x-9y=\left(2x-3y\right)\left(2x+3\right)+3\left(2x-3y\right)\)
\(=\left(2x-3y\right)\left(2x+3y+3\right)\)
b)
\(1-2x+2yz+x^2-y^2-z^2=\left(x^2-2x+1\right)-\left(y^2-2yz+z^2\right)\) (đổi dấu)
\(=\left(x-1\right)^2-\left(y-z\right)^2\)
c)
\(x^3-1+5x^2-5+3x-3=\left(x-1\right)\left(x^2+x+1\right)+5\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1+5\left(x+1\right)+3\right)\)
\(=\left(x-1\right)\left(x^2+x+1+5x+5+3\right)\)
\(=\left(x-1\right)\left(x^2+6x+9\right)=\left(x-1\right)\left(x+3\right)^2\)
a: \(x^2-9y^2-x+3y\)
\(=\left(x-3y\right)\left(x+3y\right)-\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-1\right)\)
a) \(x^2-9y^2-x+3y=\left(x-3y\right)\left(x+3y\right)-\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-1\right)\)
b) \(125x^3-150x^2+60x-8=\left(5x-2\right)^3\)