Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Nhận xét: (x+y+x)^2=(x^ +y^2 +z^2) +2(xy+yz+zx)
Đặt x^ +y^2 +z^2=a
xy+yz+zx=b
Khi đó ta có a(a+2b)+b^2= (a+b)^2
Phân tích đa thức thành nhân tử:
a. A= (x2 + y2 + z2)(x + y + z)2 + (xy + yz + zx)2
b. B= 2(x4 + y4 + z4) - (x2 + y2 + z2)2 -2(x2 + y2 + z2)(x + y + z)2 + (x + y + z)4
c. C= (a + b + c)3 - 4(a3 + b3 + c3) -12abc
Giải
Đặt x^2 + y^2 + z^2 =a,
xy + yz + zx = b
Ta có : ( x^2 + y^2 + z^2 )
( y + x + z )^2 + (xy + yz + zx )^2
= a (x^2 + y^2 + z^2 + 2xy + 2yz + 2xz ) + b^2
= a (a +2b) +b^2
= a^2 + ab + b^2
=( a + b ) ^ 2
= (x^2 +y^2 + z^2 + xy + yz + zx )^2
chúc bạn học tốt ( có người dạy mình )
a ) \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=x^3-3x^2y+3xy^2-y^3+y^3-3y^2z+3yz^2-z^3+z^3-3z^2x+3zx^2-x^3\)
\(=-3x^2y+3xy^2-3y^2z+3yz^2-3z^2x+3zx^2\)
b)\(x\left(y^2-z^2\right)+z\left(x^2-y^2\right)+y\left(z^2-x^2\right)\)
=\(x\left(y^2-z^2\right)-\left(y^2-z^2+z^2-x^2\right)z+y\left(z^2-x^2\right)\)
=\(x\left(y^2-z^2\right)-z\left(y^2-z^2\right)-z\left(z^2-x^2\right)+y\left(z^2-x^2\right)\)
=\(\left(y^2-z^2\right)\left(x-z\right)+\left(z^2-x^2\right)\left(y-z\right)\)
=\(\left(y-z\right)\left(z-x\right)\left(-\left(y+z\right)+z+x\right)\)
=\(\left(y-z\right)\left(z-x\right)\left(x-y\right)\)
6,
=a4 [-(a-b)-(c-a)] + [b4(c-a)+c4(a-b)]
=rồi nhóm hạng tử chung lại
=và sau đó tách ra bằng hằng đẳng thức
kết quả =(a-b)(c-a)(c-b)(a2+b2+c2+ab+bc+ca)
Bài này khá dài nên mk nhác viết , bn cố gắng làm bài nhé !
Em thử, sai thì thôi
a) Đặt c - b =x; a - c = y suy ra b - a = -(x+y)
Ta có \(a^3x+b^3y-c^3\left(x+y\right)\)
\(=x\left(a-c\right)\left(a^2+ac+c^2\right)+y\left(b-c\right)\left(b^2+bc+c^2\right)\)
\(=\left(c-b\right)\left(a-c\right)\left(a^2+ac+c^2\right)-\left(a-c\right)\left(c-b\right)\left(b^2+bc+c^2\right)\)
\(=\left(a-c\right)\left(c-b\right)\left(a^2+ac-b^2-bc\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(c-b\right)\left(a+b+c\right)\)
b) tương tự cũng phải đặt:v
x - y = a; y - z = b thì: z - x = -(a+b)
\(xya+yzb-zx\left(a+b\right)=xya-xza+yzb-xzb\)
\(=xa\left(y-z\right)+zb\left(y-x\right)\)
\(=x\left(x-y\right)\left(y-z\right)-z\left(y-z\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)