Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x7+x5+1=x7+x6-x6+2x5-x5+x4-x4+x3-x3+x2-x2+1
=x7-x6+x5-x3+x2+x6-x5+x4-x2+x+x5-x4+x3-x+1
=x2(x5-x4+x3-x+1)+x(x5-x4+x3-x+1)+1(x5-x4+x3-x+1)
=(x2+x+1)(x5-x4+x3-x+1)
b)4x4-32x2+1=4x4+12x3+2x2-12x3-36x2-6x+2x2+6x+1
=2x2(2x2+6x+1)-6x(2x2+6x+1)+1(2x2+6x+1)
=(2x2-6x+1)(2x2+6x+1)
c)x6+27=(x2+3)(x2-3x+3)(x2+3x+3)
d)3(x4+x2+1)-(x2+x+1)
=3x4-3x3+2x2+3x3-3x2+2x+3x2-3x+2
=x2(3x2-3x+2)+x(3x2-3x+2)+1(3x2-3x+2)
=(x2+x+1)(3x2-3x+2)
e)bạn tự làm nhé
a) x3-2x2-x+2
=x(x2-1)+2(-x2+1)
=x(x2-1)-2(x2-1)
=(x2-1)(x-2)
b)
x2+6x-y2+9
=x2+6x+9-y2
=(x+3)2-y2
=(x+3-y)(x+3+y)
b ) Ta có : 3x2 - 7x - 6
= 3x2 - 9x + 2x - 6
= 3x (x - 3) + 2(x - 3)
= (x - 3)(3x + 2)
a) x3 -2x2 +5x-4
=x3-x2-x2+x+4x-4
=x2(x-1)-x(x-1)+4(x-1)
=(x2-x+4)(x-1)
b) x3-x2+x+3
=x3+x2-2x2-2x+3x+3
=x2(x+1) -2x(x+1)+3(x+1)
=(x2-2x+3)(x+1)
c) 6x3+x2+x+1
=6x3+ 3x2-2x2-x+2x+1
=6x2(x+\(\frac{1}{2}\)) - 2x(x+\(\frac{1}{2}\)) +2(x+\(\frac{1}{2}\))
=(6x2-2x+2) (x+\(\frac{1}{2}\))
=2( 3x2-x+1) (x+\(\frac{1}{2}\))
d) 4x3 + 6x2+4x+1
= 4x3+2x2+4x2+2x+2x+1
= 4x2(x+\(\frac{1}{2}\))+ 4x(x+\(\frac{1}{2}\))+2(x+\(\frac{1}{2}\))
= 2(2x2 +2x+1)( x+\(\frac{1}{2}\))
e) x6 -9x3+8
Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)
\(=x^3+y^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)
Đặt \(x^2+7x=t\)
\(\left(t+10\right)\left(t+12\right)-8=t^2+22t+120-8\)
\(=t^2+22t+112=\left(t+8\right)\left(t+14\right)\)
Theo cách đặt \(=\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)
x^3-x+6=x^3+2x^2-2x^2-4x+3x+6=x^2.(x+2)-2x.(x+2)+3.(x+2)=(x^2-2x+3).(x+2)