Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8x^3\left(y+z\right)-y^3\left(z+2x\right)-z^3\left(2x-y\right)\)
\(=8x^3\left(y+z\right)-y^3\left[\left(y+z\right)+\left(2x-y\right)\right]-z^3\left(2x-y\right)\)
\(=8x^3\left(y+z\right)-y^3\left(y+z\right)-y^3\left(2x-y\right)-z^3\left(2x-y\right)\)
\(=\left(y+z\right)\left(8x^3-y^3\right)-\left(2x-y\right)\left(y^3+z^3\right)\)
\(=\left(y+z\right)\left(2x-y\right)\left(4x^2+4xy+y^2\right)-\left(2x-y\right)\left(y+z\right)\left(y^2-xy+z^2\right)\)
\(=\left(y+z\right)\left(2x-y\right)\left(4x^2+4xy+y^2-y^2+xy-z^2\right)\)
\(=\left(y+z\right)\left(2x-y\right)\left(4x^2+5xy-z^2\right)\)
Bây giờ mình đặt \(\left(2x;-y;z\right)=\left(a;b;c\right)\)với đa thức đã cho là S cho nó đẹp cái đã, cơ mà đề bài khúc cuối là cộng hay trừ thế
Nếu khúc cuối là trừ thì lúc này \(S=a^3\left(b+c\right)+b^3\left(c+a\right)-c^3\left(a+b\right)\)
Ta thấy biểu thức S gần đối xứng với các biến a,b,c
Với các biểu thức này thì thường dùng xét giá trị biến kiểu như thế này:
Nếu a=c thì thay vào S=b3(c+a)
Nếu b=c thì thay vào S=a3(b+c)
Do đó ta thấy S có dạng A.(b+c)(c+a), với a là một biểu thức bậc 2 với 3 biến a,b,c
Bây giờ mình đi tìm A như sau
Giả sử \(A=\alpha a^2+\beta b^2+\gamma c^2+uab+vbc+wca\)
Thử với các giá trị \(\cdot\left(a;b;c\right)=\left(1;2;3\right);\left(4;5;6\right);\left(7;8;9\right);...\)
Rồi tìm ra các hệ số của A rồi suy ra S bằng bao nhiêu đó
a) \(\left(x+y\right)^3-x^3-y^3\)
\(=\left(x+y\right)^3-\left(x^3+y^3\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)
\(=3xy\left(x+y\right)\)
Ta có:
\(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)
\(=x^2y^2\left(y-x\right)+y^2z^2\left(z-x-y+x\right)-z^2x^2\left(z-x\right)\)
\(=x^2y^2\left(y-x\right)+y^2z^2\left(z-x\right)-y^2z^2\left(y-x\right)-z^2x^2\left(z-x\right)\)
\(=y^2\left(y-x\right)\left(x-z\right)\left(x+z\right)+z^2\left(z-x\right)\left(y-x\right)\left(y+x\right)\)
\(=\left(y-x\right)\left(x-z\right)\left(y^2x+y^2z-z^2y-z^2x\right)\)
\(=\left(y-x\right)\left(x-z\right)\left(y-z\right)\left(xy+yz+zx\right)\)
Sửa đề\(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
\(=\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(-y^2-z^2\right)^3\)
Đặt \(\hept{\begin{cases}x^2+y^2=a\\z^2-x^2=b\\-y^2-z^2=c\end{cases}}\)
Nhận thấy \(a+b+c=x^2+y^2+z^2-x^2-y^2-z^2=0\)
Mà \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)( bạn tự chứng minh cái này nha )
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
Thay \(\hept{\begin{cases}a=x^2+y^2\\b=z^2-x^2\\c=-y^2-z^2\end{cases}}\) vào (1) ta được :
\(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(-y^2-z^2\right)^3=3\left(x^2+y^2\right)\left(z^2-x^2\right)\left(-y^2-z^2\right)\)
a) x3+y3+z3-3xyz
=(x+y)3+z3-3x2y-3xy2-3xyz
=(x+y+z).[(x+y)2+(x+y).z+z2]-3xy.(x+y+z)
=(x+y+z)(x2+2xy+y2+zx+zy+z2)-3xy.(x+y+z)
=(x+y+z)(x2+2xy+y2+zx+zy+z2-3xy)
=(x+y+z)(x2+y2+zx+zy+z2-zy)
b)a2(b-c)+b2(c-a)+c2(a-b)
=a2b-a2c+b2c-b2a+c2a-c2b
=(a2b-c2b)+(-a2c+c2a)+(b2c-b2a)
=b.(a2-c2)-ac.(a-c)-b2.(a-c)
=b.(a+c)(a-c)-ac.(a-c)-b2.(a-c)
=(a-c)[b.(a+c)-ac-b2]
=(a-c)(ab+bc-ac-b2)
=(a-c)[(ab-ac)+(bc-b2)]
=(a-c)[a.(b-c)-b.(b-c)]
=(a-c)(b-c)(a-b)
a,\(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-2b\right)\)
\(=\left(a-b\right)2\left(a-b\right)\)
\(=2\left(a-b\right)^2\)
b,\(\left(x+y\right)\left(2x-y\right)+\left(2x-y\right)\left(3x-y\right)-\left(y-2x\right)\)
\(=\left(x+y\right)\left(2x-y\right)+\left(2x-y\right)\left(3x-y\right)+\left(2x-y\right)\)
\(=\left(2x-y\right)\left(x+y+3x-y+1\right)\)
\(=\left(2x-y\right)\left(4x+1\right)\)
c,\(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
\(=x^2y-x^2z+y^2z-y^2x+z^2\left(x-y\right)\)
\(=x^2y-y^2x-x^2z+y^2z+z^2\left(x-y\right)\)
\(=xy\left(x-y\right)-z\left(x^2-y^2\right)+z^2\left(x-y\right)\)
\(=xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-zx-zy+z^2\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)