Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(=2\left(x^8-6x^4+9\right)=2\left(x^4-3\right)^2\)
b/ \(=b\left(a^4+6a^2b^2+9b^4\right)=b\left(a^2+3b^2\right)^2\)
c/ \(=-2\left(a^6+4a^3b+4b^2\right)=-2\left(a^3+2b\right)^2\)
d/ \(=x\left(y^{12}+4y^6+4\right)=x\left(y^6+2\right)^2\)
4/ a/ Ta có \(x^2-2xy+y^2+a^2=\left(x-y\right)^2+a^2\)
Mà \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\a^2\ge0\end{cases}}\)=> \(\left(x-y\right)^2+a^2\ge0\)
=> \(x^2-2xy+y^2+a^2\ge0\)
Vậy \(x^2-2xy+y^2\)chỉ nhận những giá trị không âm.
b/ Ta có \(x^2+2xy+2y^2+2y+1=\left(x^2+2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x+y\right)^2+\left(y+1\right)^2\)
Mà \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}}\)=> \(\left(x+y\right)^2+\left(y+1\right)^2\ge0\)
=> \(x^2+2xy+2y^2+2y+1\ge0\)
Vậy \(x^2+2xy+2y^2+2y+1\)chỉ nhận những giá trị không âm.
c/ Ta có \(9b^2-6b+4c^2+1=\left(3b-1\right)^2+4c^2\)
Mà \(\hept{\begin{cases}\left(3b-1\right)^2\ge0\\4c^2\ge0\end{cases}}\)=> \(\left(3b-1\right)^2+4c^2\ge0\)
=> \(9b^2-6b+4c^2+1\ge0\)
Vậy \(9b^2-6b+4c^2+1\)chỉ nhận những giá trị không âm.
d/ Ta có \(x^2+y^2+2x+6y+10=\left(x+1\right)^2+\left(y+3\right)^2\)
Mà \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)=> \(\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
=> \(x^2+y^2+2x+6y+10\ge0\)
Vậy \(x^2+y^2+2x+6y+10\)chỉ nhận những giá trị không âm.
1/
a/ \(x^4-y^4=\left(x^2-y^2\right)\)
b/ \(\left(a+b\right)^3-\left(a-b\right)^3=\left(a+b-a+b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2b\left[a^2+2ab+b^2-\left(a^2-b^2\right)+\left(a^2-2ab+b^2\right)\right]\)
\(=2b\left(a^2+b^2\right)\)
c/ \(\left(a^2+2ab+b^2\right)+\left(a+b\right)\)
= \(\left(a+b\right)^2+\left(a+b\right)\)
= \(\left(a+b\right)\left(a+b+1\right)\)
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
Bài1: Phân tích các đa thức sau thành nhân tử
a)36-4x2+4xy-y2
\(=6^2-\left(4x^2-4xy+y^2\right)\)
\(=6^2-\left(2x-y\right)^2\)
\(=\left(6+2x-y\right)\left(6-2x+y\right)\)
b)2x4+3x2-5
\(=2x^4-2x^2+5x^2-5\)
\(=2x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(2x^2+5\right)\left(x^2-1\right)\)
\(=\left(2x^2+5\right)\left(x-1\right)\left(x+1\right)\)
B1:a)\(36-4x^2+4xy-y^2=36-\left(4x^2-4xy+y^2\right)=6^2-\left(2x-y\right)^2\)
\(=\left(6-2x+y\right)\left(6+2x-y\right)\)
c)\(a^3-ab^2+a^2+b^2-2ab=a\left(a^2-b^2\right)+\left(a-b\right)^2\)\(=a\left(a-b\right)\left(a+b\right)+\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab+a-b\right)\)
d)\(x^2-\left(a^2+b^2\right)x+a^2b^2=x^2-a^2x-b^2x+a^2b^2\)\(=x\left(x-a^2\right)-b^2\left(x-a^2\right)=\left(x-a^2\right)\left(x-b^2\right)\)
e)\(x\left(x-y\right)+x^2-y^2=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)\(=\left(x-y\right)\left(x+x+y\right)=\left(x-y\right)\left(2x+y\right)\)
c: \(5\left(a+b\right)+x\left(a+b\right)\)
=(a+b)(x+5)
d: \(\left(a-b\right)^2-\left(b-a\right)\)
\(=\left(a-b\right)^2+\left(a-b\right)\)
=(a-b)(a-b+1)
e: \(=\left(12x^2+6x\right)\left(y+z+y-z\right)\)
\(=2y\cdot6x\cdot\left(2x+1\right)=12xy\left(2x+1\right)\)
\(\left(2a+b\right)^2-\left(2a+a\right)^2\)
\(=\left(2a+b-2a-a\right)\left(2a+b+2a+a\right)\)
\(=\left(b-a\right)\left(5a+b\right)\)
\(\left(2a+b\right)^2-\left(2a+a\right)^2\)
\(=\left(2a+b\right)^2-\left(3a\right)^2\)
\(=\left(2a+b-3a\right)\left(2a+b+3a\right)\)
\(=\left(b-a\right)\left(5a+b\right)\)
a) co sai de ko
b)x3-2x2+4x2-8x+3x-6=x2(x-2)+4x(x-2)+3(x-2)=(x-2)(x2+4x+3)=(x-2)(x+3)(x+1)
c)x3-2x2+2x2-4x-3x+6=x2(x-2)+2x(x-2)-3(x-2)=(x-2)(x2+2x-3)=(x-2)(x+3)(x-1)
d)x3-3x2+x2-3x-2x+6=x2(x-3)+x(x-3)-2(x-3)=(x-3)(x2+x-2)=(x-3)(x+2)(x-1)
bn chép lại đề nhé
a/ \(=\left(x+y\right)^2-4x^2y^2=\left(x+y+2xy\right)\left(x+y-2xy\right)\)
b/ \(=\left(2bc+b^2+c^2-a^2\right)\left(2bc-b^2-c^2+a^2\right)\)
\(=\left[\left(b+c\right)^2-a^2\right]\left[-\left(b+c\right)^2+a^2\right]\)
\(=\left(b+c-a\right)\left(b+c+a\right)^2\left(a-b-c\right)\)
c/ \(=2a^2+2b^2-2c^2+4ab=2\left[\left(a^2+b^2+2ab\right)-c^2\right]\)
\(=2\left(a+b-c\right)\left(a+b+c\right)\)
d/ \(=\left(4x^2-25\right)^2-9\left(4x^2-20x+25\right)\)
\(=\left(4x^2-25\right)^2-9\left(4x^2+25\right)+180x\)
tới đây bạn đặt a= 4x^2 -25 rồi làm típ nha, mình lười quá ><
e/ tương tự câu d nha bạn
f/ \(=a^4\left(a^2-1\right)+2a^2\left(a+1\right)\)
\(=a^4\left(a-1\right)\left(a+1\right)+2a^2\left(a+1\right)\)
\(=a^2\left(a+1\right)\left(a^2+2\right)\)
g/ đặt \(a=3x^2+3x+2\) khi đó biểu thức trở thành
\(a^2-\left(a+4\right)^2=a^2-a^2-8a-16\)
\(=-8a-16=-8\left(3x^2+3x+2-8\right)=-8\left(3x^2+3x-6\right)\)
\(=-24\left(x^2+x-2\right)=-24\left(x-1\right)\left(x+2\right)\)
xong rùi nha bn. Chúc bn hc tốt (xin lỗi tại có mấy câu mình lười nha)
\(x^2-4x^2y^2+y^2+2xy\)
\(=\left(x^2+2xy+y^2\right)-4x^2y^2\)
\(=\left(x+y\right)^2-4x^2y^2\)
\(=\left(x-2xy+y\right)\left(x+2xy+y\right)\)
a,2x^8-12x^4+18=2(x^8-6x^4+9)=2[(x^4)^2-2.x^4.3+3^2] =2(x^4+3)^2 c,=-2(a^6+4a^3b-4b^2)=-2[(a^3)^2+2.a^3.2b-(2b)^2]=-2(a^3-2b)^2 d, 4x+4xy^6+xy^12=x(4+4y^6+y^12)=X[2^2+2.2.y^6+(y^6)^2]=x(2+y^6)^2 Câu b Mình sẽ làm sau nh, trên đây là theo cách giải của mình thui.
Trình bày kém!!!!