Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4+2.x3-13.x2-14x+24
=x3.(x+2)-13x2+12x-26x+24
=x3.(x+2)-x.(13x-12)-2.(13x-12)
=x3.(x+2)-(13x-12)(x+2)
=(x+2)(x3-13x+12)
=(x+2)(x3-x-12x+12)
=(x+2)[x.(x2-1)-12.(x-1)]
=(x+2)[x.(x-1)(x+1)-12.(x-1)]
=(x+2)(x-1)[x.(x+1)-12]
=(x+2)(x-1)(x2+x-12)
=(x+2)(x-1)(x2-3x+4x-12)
=(x+2)(x-1)[x.(x-3)+4.(x-3)]
=(x+2)(x-1)(x-3)(x+4)
\(x^3-3x^2+1-3x=\left(x^3+1\right)-3x^2-3x\)
\(=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1-3x\right)=\left(x+1\right)\left(x^2-4x+1\right)\)
\(x^2+5x-2=\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}\right)-\frac{25}{4}-2=\left(x+\frac{5}{2}\right)^2-\frac{33}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\left(\frac{\sqrt{33}}{2}\right)^2=\left(x+\frac{5}{2}-\frac{\sqrt{33}}{2}\right)\left(x+\frac{5}{2}+\frac{\sqrt{33}}{2}\right)\)
\(=\left(x+\frac{5-\sqrt{33}}{2}\right)\left(x+\frac{5+\sqrt{33}}{2}\right)\)
\(A=x^4-14x^3+71x^2-154x+120\)
\(=x^3\left(x-2\right)-12x^2\left(x-2\right)+47x\left(x-2\right)-60\left(x-2\right)\)
\(=\left(x-2\right)\left(x^3-12x^2+47x-60\right)\)
\(=\left(x-2\right)\left[x^2\left(x-3\right)-9x\left(x-3\right)+20\left(x-3\right)\right]\)
\(=\left(x-2\right)\left(x-3\right)\left(x^2-9x+20\right)=\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)\)
b, Vì A là tích của 4 số nguyên liên tiếp nên A chia hết cho 24
Tìm x
x3-x2-14x+24=0
<=> x3-3x2+2x2-6x-8x+24=0
<=> x2(x-3)+2x(x-3)-8(x-3)=0
<=> (x-3)(x2+2x-8)=0
<=> (x-3)(x2-2x+4x-8)=0
<=>(x-3)(x-2)(x+4)=0
<=> x-3=0 hay x-2=0 hay x+4=0
<=> x=3 hay x=2 hay x=-4
S={3;2;-4}
x4+7x3+14x2+14x+4
=x4+7x3+4x2+10x2+14x+4
=(x4+4x2+4)+(7x3+14x)+10x2
=(x2+2)2+7x(x2+2)+10x2
=(x2+2)2+2x(x2+2)+5x(x2+2)+10x2
=(x2+2)(x2+2+2x)+5x(x2+2+2x)
=(x2+2+2x)(x2+2+5x)
\(x^3-x^2-14x+24\)
\(=x^3+4x^2-5x^2-20x+6x+24\)
\(=\left(x^3+4x^2\right)-\left(5x^2+20x\right)+\left(6x+24\right)\)
\(=x^2\left(x+4\right)-5x\left(x+4\right)+6\left(x+4\right)\)
\(=\left(x^2-5x+6\right)\left(x+4\right)\)
\(=\left(x^2-2x-3x+6\right)\left(x+4\right)\)
\(=\left[x\left(x-2\right)-3\left(x-2\right)\right]\left(x+4\right)\)
\(=\left(x-2\right)\left(x-3\right)\left(x+4\right)\)