Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}=\left(x+\frac{1}{2}\right)^3\)
Bạn ghi sai đề nha
Hok tốt
\(x^3+\frac{3}{2}x^2+\frac{3}{2}x+\frac{1}{8}\)
\(=\left(x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}\right)+\frac{3}{2}x-\frac{3}{4}x\)
\(=\left(x+\frac{1}{2}\right)^3+\frac{3}{4}x\)
\(=\left(x+\frac{1}{2}\right)^3+\left(\sqrt[3]{\frac{3}{4}x}\right)^3\)
\(=\left(x+\frac{1}{2}+\sqrt[3]{\frac{3}{4}x}\right)\left[\left(x+\frac{1}{2}\right)^2-\left(x+\frac{1}{2}\right)\left(\sqrt[3]{\frac{3}{4}}\right)+\left(\sqrt[3]{\frac{3}{4}}\right)^2\right]\)
b) \(\frac{2}{3}x^3y^4-\frac{5}{3}x^5y^2\)
\(=x^3y^2\left(\frac{2}{3}y^2-\frac{5}{3}x^2\right)\)
\(=x^3y^2\left(\sqrt{\frac{2}{3}}y+\sqrt{\frac{5}{3}}x\right)\left(\sqrt{\frac{2}{3}}y-\sqrt{\frac{5}{3}}x\right)\)
d) \(x^2-25=\left(x+5\right)\left(x-5\right)\)
\(\frac{2}{3}x-\frac{1}{9}x^2-1\)
\(=-\left(\frac{1}{9}x^2-\frac{2}{3}x+1\right)\)
\(=-\left[\left(\frac{1}{3}x\right)^2-2\cdot\frac{1}{3}x\cdot1+1^2\right]\)
\(=-\left(\frac{1}{3}x-1\right)^2\)
2.
pt <=> (x/2000 - 1) + (x+1/2001 - 1) + (x+2/2002 - 1) + (x+3/2003 - 1) + (x+4/2004 - 1 ) = 0
<=> x-2000/2000 + x-2000/2001 + x-2000/2002 + x-2000/2003 + x-2000/2004 = 0
<=> (x-2000).(1/2000 + 1/2001 + 1/2002 + 1/2003 + 1/2004) = 0
<=> x-2000=0 ( vì 1/2000 + 1/2001 + 1/2002 + 1/2003 + 1/2004 > 0 )
<=> x=2000
Tk mk nha
1.
a, = (2x-1)^2-2.(2x-1)+1-4
= (2x-1-1)^2-4
= (2x-2)^2-4
= (2x-2-2).(2x-2+2)
= 2x.(2x-4)
b, = [x.(x+3)].[(x+1).(x+2)]
= (x^2+3x).(x^2+3x+1)-8
= (x^2+3x+1)^2-1-8
= (x^2+3x+1)^2-9
= (x^2+3x+1-3).(x^2+3x+1+3)
= (x^2+3x-2).(x^2+3x+4)
= ((x+1).(x+3).(x^2+3x-2)
Tk mk nha
\(=x\left(\frac{x^2}{4}+x+1\right)=x\left(\frac{x}{2}+1\right)^2\)
Để x;y;z ra ngoài làm thừa số chung rồi quất hết phần còn lại vào ngoặc thì thành 2 nhân tử thôi bạn, kiểu như phân phối ý.
\(\frac{x^4+x^3-x^2-2x-2}{x^4+2x^3-x^2-4x-2}=\frac{\left(x^4-x^2-2\right)+\left(x^3-2x\right)}{\left(x^4-x^2-2\right)+\left(2x^3-4x\right)}\)
\(=\frac{\left(x^2-2\right)\left(x^2+1\right)+x\left(x^2-2\right)}{\left(x^2-2\right)\left(x^2+1\right)+2x\left(x^2-2\right)}=\frac{\left(x^2-2\right)\left(x^2+x+1\right)}{\left(x^2-2\right)\left(x^2+2x+1\right)}\)
\(=\frac{x^2+x+1}{\left(x+1\right)^2}\)
\(F\left(x\right)=\frac{x^4+x^3-x^2-2x-2}{x^4+2x^3-x^2-4x-2}\)
\(=\frac{\left(x^4+x^3+x^2\right)-2x^2-2x-2}{\left(x^4+2x^3+x^2\right)-\left(2x^2+4x+2\right)}\)
\(=\frac{x^2\left(x^2+x+1\right)-2\left(x^2+x+1\right)}{x^2\left(x^2+2x+1\right)-2\left(x^2+2x+1\right)}=\frac{x^2+x+1}{x^2+2x+1}\)
x^3-5x2+8x-4=x3-2x2-3x2+6x+2x-4=x2(x-2)-3x(x-2)+2(x-2)
=(x-2)(x2-3x+2)
=(x-2)(x2-2x-x+2)=(x-2)(x-2)(x-1)=(x-2)2(x-1)
\(x^2-\frac{5}{3}x-\frac{2}{3}\)
\(=x^2-2x+\frac{1}{3}x-\frac{2}{3}\)
\(=x\left(x-2\right)+\frac{1}{3}\left(x-2\right)\)
\(=\left(x-2\right)\left(x+\frac{1}{3}\right)\)