Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
\(=\left[x^2+\left(a+b\right)x+ab\right]\left(x+c\right)\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)
b) \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
c) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2c-ab^2+c^2a-bc^2\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(a^2+bc-ab-ca\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Nhầm đoạn cuối là \(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
\(A=x^2-y^2-x+y\)
\(=\left(x^2-y^2\right)-\left(x-y\right)\)
\(=\left(x+y\right)\left(x-y\right)-\left(x-y\right)\)
\(=\left(x+y-1\right)\left(x-y\right)\)
\(B=ax-ab+b-x\)
\(=\left(ax-ab\right)-\left(x-b\right)\)
\(=a\left(x-b\right)-\left(x-b\right)\)
\(=\left(a-1\right)\left(x-b\right)\)
\(D=x^2-2xy+y^2-m^2+2mn-n^2\)
\(=\left(x^2+y^2-2xy\right)-\left(m^2+n^2-2mn\right)\)
\(=\left(x-y\right)^2-\left(m-n\right)^2\)
\(=\left(x-y-m+n\right)\left(x-y+m-n\right)\)
\(E=x^2-y^2-2yz-z^2\)
\(=x^2-\left(y^2+z^2+2yz\right)\)
\(=x^2-\left(y-z\right)^2\)
\(=\left(x+y-z\right)\left(z-y+z\right)\)
\(=>A=\left(x-y\right)\left(x+y\right)-\left(x-y\right)\\ =>A=\left(x-y\right)\left(x+y-1\right)\) ( dấu phía sau bị lỗi nha )
\(=>B=a\left(x-b\right)-\left(x-b\right)\\ =>B=\left(x-b\right)\left(a-1\right)\)
\(=>C=\left(a+b+c\right)\left(3x^2+36xy+108y^2\right)\)
\(=>C=3\left(a+b+c\right)\left(x^2+12xy+36y^2\right)\\ =>C=3\left(a+b+c\right)\left(x+6y\right)^2\)
\(\Rightarrow D=\left(x-y\right)^2-\left(m^2-2mn+n^2\right)\\ =>D=\left(x-y\right)^2-\left(m-n\right)^2\)
\(=>D=\left(x-y+m-n\right)\left(x-y-m+n\right)\)
\(=>E=x^2-\left(y^2+2yz+z^2\right)\\ =>E=x^2-\left(y+z\right)^2\)
\(=>E=\left(x-y-z\right)\left(x+y+z\right)\)
T I C K ủng hộ nha
CHÚC BẠN HỌC TỐT
\(a,3x^2+2x-1\)
\(\Leftrightarrow3x^2+3x-x-1\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)\)
\(b,x^3+6x^2+11x+6\)
\(\Leftrightarrow x^3+3x^2+3x^2+9x+2x+6\)
\(\Leftrightarrow x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+6\right)\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+3x+2\right)\)
\(\Leftrightarrow\left(x+3\right)\left(x+1\right)\left(x+2\right)\)
\(c,x^4+2x^2-3\)
\(\Leftrightarrow x^4-x^3+x^3-x^2+3x^2-3\)
\(\Leftrightarrow x^3\left(x-1\right)+x^2\left(x-1\right)+3\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+3x+3\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+3\right)\)
\(d,ab+ac+b^2+2bc+c^2\)
\(\Leftrightarrow a\left(b+c\right)+\left(b+c\right)^2\)
\(\Leftrightarrow\left(b+c\right)\left(a+b+c\right)\)
3x^2+2x-1=3x^2+3x-x-1=3x(x+1)-(x+1)=(x+1)(3x-1)
x^4+2x^2-3=x^4+3x^2-x^2 -3=x^2(x^2+3)-(x^2+3)=(x^2+3)(x^2-1)
a, <=> (x-1)^2-4=0
<=> (x-1-2).(x-1+2)=0
<=> (x-3).(x+1)=0
<=> x-3=0 hoặc x+1=0
<=> x=3 hoặc x=-1
b, <=> x^2-x+2x-2=0
<=> x^2+x-2=0
<=> (x^2-x)+(2x-2)=0
<=> (x-1).(x+2)=0
<=> x-1=0 hoặc x+2=0
<=> x=1 hoặc x=-2
c, <=> (2x+1)^2=x^2
<=> 2x+1=x hoặc 2x+1=-x
<=> x=-1 hoặc x=-1/3
d, <=> (x^2-2x)-(3x-6)=0
<=> (x-2).(x-3)=0
<=> x-2=0 hoặc x-3=0
<=> x=2 hoặc x=3
Tk mk nha
a,\(\left(x^2-2x+1\right)-4=0\)
\(\Leftrightarrow\left(x-1\right)^2-4=0\)
\(\Leftrightarrow\left(x-1-2\right)\left(x-1+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)