Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5\)
\(=x^5-5x^4y+10x^3y^2-10x^2y^3+5xy^4-y^5+y^5-5y^4z+10y^3z^2-10y^2z^3+5yz^4-z^5\)\(+z^5-5z^4x+10z^3x^2-10z^2x^3+5zx^4-x^5\)
\(=5\left(-x^4y+2x^3y^2-2x^2y^3+xy^4-y^4z+2y^3z^2-2y^2z^3+yz^4-z^4x+2z^3x^2-2z^2x^3+zx^4\right)\)
a) \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)
\(=\left[\left(x-2\right)\left(x-5\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]+1\)
\(=\left(x^2-7x+10\right)\left(x^2-7x+12\right)+1\)
Đặt: \(x^2-7x+11=t\)
\(\Rightarrow\hept{\begin{cases}x^2-7x+10=t-1\\x^2-7x+12=t+1\end{cases}}\)
\(\Rightarrow\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)
\(=\left(x^2-7x+10\right)\left(x^2-7x+12\right)+1\)
\(=\left(t-1\right)\left(t+1\right)+1\)
\(=t^2-1+1\)
\(=t^2\)
Vậy: \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)
\(=\left(x^2-7x+11\right)^2\)
1) \(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
2)\(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(a+5\right)\)
\(a^3-a^2x-ay+xy=a^2\left(a-x\right)-y\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)
Bài 1: 4a2-4ab+b2-9a2b2
=(2a)2-2.2a.b+b2-(3ab)2
=(2a-b)2-(3ab)2
=(2a-b-3ab)(2a-b+3ab)
a/ (4a2-4ab+b2)-9a2b2
= (2a-b)2-(3ab)2
= (2a-b-3ab) (2a-b+3ab)