K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2016

1)   \(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)

\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)

2)\(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(a+5\right)\)

\(a^3-a^2x-ay+xy=a^2\left(a-x\right)-y\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)

13 tháng 6 2015

a) \([(x-y)3 + (y-z)3]+ (z-x)3\)=\(\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)

\(=\left(x-z\right)\left[\left(\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right)\right]\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]=\left(x-z\right)\left[\left(x-2y+z\right)\left(x+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)=\left(x-z\right)\left(x-y\right)\left(z-y\right)3\)

b) \(=y^2\left(x^2y-x^3+z^3-z^2y\right)-z^2x^2\left(z-x\right)=y^2\left[-y\left(z^2-x^2\right)-\left(z^3-x^3\right)\right]-z^2x^2\left(z-x\right)\)

\(=y^2\left(z-x\right)\left(-yz-xy-z^2-zx-x^2\right)-z^2x^2\left(z-x\right)=\left(z-x\right)\left(-y^3z-xy^2-z^2y^2-xyz-x^2y^2-z^2x^2\right)\)

đến đây coi như là thành nhân tử rồi nha. em muốn gọn thì ráng ngồi nghĩ rồi tách nha. chỉ cần nhóm mấy cái có ngoặc giống nhau là đc. k khó đâu. chịu khó nghĩ để rèn luyện nha

c) \(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)

\(\left(9a^3-6a^2\right)+\left(6a^2-4a\right)+\left(-9a+6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)

d) em sửa đề đi. đề sai rồi. đồng nhất hệ số phải có dấu bằng nha.

có gì liên hệ chị. đúng nha ;)

Ta có : \(\left(a-b\right)^2\ge0\forall a,b\)

            \(\left(b-c\right)^2\ge0\forall b,c\)

             \(\left(c-a\right)^2\ge0\forall c,a\)

Nên : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

Thay số ta có : \(a^2+b^2+c^2\ge\frac{2^2}{3}=\frac{4}{3}\)

Vậy GTNN của bt là \(\frac{4}{3}\) 

1 tháng 6 2018

cảm ơn bạn nhiều

30 tháng 10 2016

Thay 12 = x + 1 vào biểu thức trên, ta có:

x4 - (x + 1)x3 + (x + 1)x2 - (x + 1)x + 111

= x4 - x4 - x3 + x3 + x2 - x2 - x + 111

= 111 - x (*)

Thay x = 11 vào (*), ta có:

111 - 11

= 100

Vậy giá trị của biểu thức trên là 100 tại x = 11

(x + y + z)3 - x3 - y3 - z3

= x3 + y3 + z3 + 3(x + y)(x + z)(y + z) - x3 - y3 - z3

= 3(x + y)(x + z)(y + z)

A = 2x2 + 10x - 1

\(=2\left(x^2+5x+\frac{25}{4}-\frac{25}{4}-\frac{1}{2}\right)\)

\(=2\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)

\(=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)

\(MinA=-\frac{27}{2}\Leftrightarrow x=-\frac{5}{2}\)

 

30 tháng 10 2016

câu2

(x+y+z)3 - x3 - y3 - z3 =(x+y)3 +z3+ 3(x+y+z)(x+y)z -x3- y3 -z3

= x3 +y3 +3xy(x+y) + z3 +3(x+y+z)(x+y)z -x3 -y3 - z3

=3(x+y)(xy+xz+yz+z2)

=3(x+y)(y+z)(x+z)

vì ko có time nên mk làm hơi tắt

9 tháng 5 2018

Ta có:   \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) 

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\) 

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\) 

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)=\left(a+b+c\right)^2\)   

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

Khi đó \(\Leftrightarrow x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\) 

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn