Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xyz-\left(xy+yz+xz\right)+\left(x+y+z\right)-1\)
\(=xyz-xy-yz+y-xz+x+z-1\)
\(=xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+z-1\)
\(=\left(xy-y-x+1\right)\left(z-1\right)\)
\(=[\left(x-1\right)y-\left(x-1\right)]\left(z-1\right)\)
\(=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)
\(xyz-\left(xy+yz+xz\right)+\left(x+y+z\right)-1\)
\(=\left(xyz-xy-xz+x\right)-yz+y+z-1\)
\(=x\left(yz-y-z+1\right)-\left(yz-y-z+1\right)\)
\(=\left(x-1\right)\left(yz-y-z+1\right)\)
\(=\left(x-1\right)\left[y\left(z-1\right)-\left(z-1\right)\right]\)
\(=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)
xyz + xz + yz + x + y + z + xy + 1
= ( xyz + xy ) + ( xz + yz ) + ( x + y) + ( z + 1 )
= xy ( z + 1 ) + z ( x + y ) + ( x+ y) + (z + 1 )
= ( xy + 1 )(z-1) + ( x+ y)(z + 1 )
= (z + 1 )(xy + x + y + 1 )
xyz + xz + yz + x + y + z + xy + 1
= ( xyz + xy ) + ( xz + yz ) + ( x + y) + ( z + 1 )
= xy ( z + 1 ) + z ( x + y ) + ( x+ y) + (z + 1 )
= ( xy + 1 )(z-1) + ( x+ y)(z + 1 )
= (z + 1 )(xy + x + y + 1 )
=(z + 1)[ x.(y+1)+(y+1)]
=(z+1)(y+1)(x+1)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
.
.
.
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
\(xy\left(x-y\right)+yz\left(y-z\right)+xz\left(z-x\right)\)
\(=xy\left(x-y\right)+yz\left[\left(y-x\right)-\left(z-x\right)\right]+xz\left(z-x\right)\)
\(=xy\left(x-y\right)-yz\left(x-y\right)-yz\left(z-x\right)+xz\left(z-x\right)\)
\(=\left(x-y\right)\left(xy-yz\right)-\left(z-x\right)\left(yz-xz\right)\)
\(=\left(x-y\right)\left(xy-yz\right)+\left(z-x\right)\left(xz-yz\right)\)
\(=\left(xy-yz\right)\left(x-y+z-x\right)\)
\(=\left(xy-yz\right)\left(-y+z\right)\)
mơn bn nha ^^
nh sáng nay lên lp thầy chữa bài thì kq nó k như z, cả cách lm nx :v
kq là: ( z - y )( x - z)( y - x )
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z2)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
xy(x-y)+yz(y-z)+xz(x-z)
=y.[x.(x-y)+z.(y-z)]+xz(x-z)
=y.(x2-xy+zy-z2)+xz.(x-z)
=y.[(x2-z2)+(-xy+zy)]+xz.(x-z)
=y.[(x-z)(x+z)-y.(x-z)]+xz.(x-z)
=y.(x-z)(x+z-y)+xz.(x-z)
=(x-z)[y.(x+z-y)+xz]
=(x-z)(xy+yz-y2+xz)