Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
2x2 + 8x + 16 = 2(x2 + 4x + 4) = 2(x + 2)2
Bài 2
\(\frac{x}{x-5}\)\(+\)\(\frac{2}{x^2-25}\)\(=\)\(\frac{x\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}\)\(+\)\(\frac{2}{x^2-25}\)\(=\)\(\frac{x^2+5x+2}{x^2-25}\)
\(\frac{x}{x-5}+\frac{2}{x^2-25}=\frac{x\left(x+5\right)+2}{x^2-25}\)
\(=\frac{x^2+5x+2}{x^2-25}\)
1/ phân tích thành nhân tử ;
= C2-( a +b )2=( c-a -b ) . ( c+a +b )
a
4x2--25=0
=> (2x)22 --52 =0
=> (2x-5)(2x+5)=0
\(\orbr{\begin{cases}2x-5=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}X=\frac{5}{2}\\X=\frac{-5\:\:. \:\:\:\:\:\:\:\:\:\:TT}{2}\end{cases}Mình\:}\)
\(4x^2=25\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\sqrt{\frac{25}{4}}\) \(=\frac{5}{2}\)
\(\left(x^3-x^2\right)^2-\left(4x^2-8x+4\right)=0\)
= \(\left(x^3-x^2\right)^2-\left(2x-2\right)^2=0\)
=(\(\left(x^3-x^2-2x+2\right)\left(x^3-x^2+2x-2\right)=0\)
=\(\left[x^2\left(x-1\right)-2\left(x-1\right)\right]\) \(\left[x^2\left(x-1\right)+2\left(x-1\right)\right]\)=0
=\(\left(x-1\right)\left(x^2-2\right)\left(x-1\right)\left(x^2+2\right)\) = 0
= \(\left(x-1\right)\left(x^2-2\right)\left(x^2+2\right)=0\)
=\(\left(x-1\right)\left(x^4-4\right)\) = 0
=> \(x-1=0\) hoặc \(x^4-4=0\)
=> \(x=1\) hoặc \(x=\pm\sqrt{2}\)
câu 2
a)\(\left(3x^2\right)^3-\left(2x\right)^3\)
= \(\left(3x^2-2x\right)\left(9x^4-54x^5+36x^4-4x^2\right)\)
= \(x\left(3x-2\right)\left(9x^4-54x^5+36x^4-4x^2\right)\)
may be wrong , but chawsc k nhiều , chỗ nào k hiểu ib hỏi mk sai nha <3
1,
a, \(\left(2x-5\right)\cdot\left(2x+5\right)=0\)
\(x=\frac{5}{2}\)
x\(=-\frac{5}{2}\)
b \(\left(x^3-x^2\right)^2-\left(2x-2\right)^2\)=0
(x-2x+2)(x+2x-2)=0
x=2
x=2/3
2,
a (3x^2)^3-(2x)^3
(3x^2-2x)(9x^4+6x^3+4x^2)
\(4x^2-25=0\)
\(\left(2x-5\right)\left(2x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-5=0\\2x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{5}{2}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{5}{2}\end{cases}}\)
\(27x^6-8x^3=\left(3x^2\right)^3-\left(2x\right)^3=\left(3x^2-2x\right)\left[\left(3x^2\right)^2+3x^2.2x+\left(2x\right)^2\right]=x^3.\left(3x-2\right).\left(3x^2+6x+4\right)\)
1a) 4x2 - 25 = 0 => 4x2 = 25 => x2 = \(\frac{25}{4}\)= \(\left(\frac{5}{2}\right)^2\)=> x = \(\frac{5}{2}\)