Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x2+5x+1=t chẳng hạn. Khi đó: (x2+5x+1)(x2+5x+3)-15=t.(t+2)-15=t2+2t-15. Giải phương trình bậc hai ta được: t=3 hoặc t=-5. Phương trình bậc hai có 2 nghiệm x1, x2 thì được viết dưới dạng nhân tử là: a(x-x1)(x-x2).
Vậy (x2+5x+1)(x2+5x+3)-15=(t-3)(t+5)=(x2+5x-2)(x2+5x+6). Có gì sai sót mong bạn bỏ qua cho =))
\(3x^2-5x+2=3x^2-3x-2x+2=3x\left(x-1\right)-2\left(x-1\right)=\left(3x-2\right)\left(x-1\right)\)
b.)x^4+5x^3+15x-9
=x^4-9+5x^3+15x
=(x^2-3)(x^2+3)+5x(x^2+3)
=(x^2+3)(x^2-3+5x)
x4 + x3 + 6x2 + 5x + 5
=x4+x3+x2+5x2+5x+5
=x2.(x2+x+1)+5.(x2+x+1)
=(x2+x+1)(x2+5)
\(x^4+5x^3-12x^2+5x+1\)
\(=x^4-x^3+6x^3-6x^2-6x^2+6x-x+1\)
\(=x^3\left(x-1\right)+6x^2\left(x-1\right)-6x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+6x^2-6x-1\right)\)
\(=\left(x-1\right)\left(x^3-x^2+7x^2-7x+x-1\right)\)
\(=\left(x-1\right)\left[x^2\left(x-1\right)+7x\left(x-1\right)+\left(x-1\right)\right]\)
\(=\left(x-1\right)\left(x^2+7x+1\right)\)
x2 - 5x + 5y - y2 =
= -5 (x-y) + (x2 - y2 )
= -5 (x-y) + (x-y)(x+y)
= (x-y) (-5 +x+y)
x2-5x+5y-y2
=x2-y2-5x+5y
=(x2-y2)-5(x+y)
=(x2-y2)(-5+x+y)
\(x^2-y^2-5x+5y=\left(x^2-y^2\right)-\left(5x-5y\right)\)
\(=\left(x+y\right)\left(x-y\right)-5\cdot\left(x-y\right)\)
\(=\left(x-y\right)\cdot\left[\left(x+y\right)-5\right]=\left(x-y\right)\cdot\left(x+y-5\right)\)
đặt a=x^2-5x
(x^2-5x)^2+10(x^2-5x+24)
=a^2+10(a+24)
=a^2+10a+24
=a^2+6a+4a+24
=a(a+6)+4(a+6)
=(a+6)(a+4)
=(x^2-5x+6)(x^2-5x+4)
=[x^2-3x-2x+6][x^2-x-4x+4]
=[x(x-3)-2(x-3)][x(x-1)+4(x-1)]
=(x-3)(x-2)(x-1)(x+4)