Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^3+6x^2+11x+6\)
\(=x^3+3x^2+3x^2+9x+2x+6\)
\(=x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+3x+2\right)\)
\(=\left(x+3\right)\left(x^2+x+2x+2\right)\)
\(=\left(x+3\right)\text{[}x\left(x+1\right)+2\left(x+1\right)\text{]}\)
\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)
b, \(2x^3+3x^2+3x+2\)
\(=2x^3+2x^2+x^2+x+2x+2\)
\(=2x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(2x^2+x+2\right)\)
c, \(x^3-4x^2-8x+8\)
\(=x^3+2x^2-6x^2-12x+4x+8\)
\(=x^2\left(x+2\right)-6x\left(x+2\right)+4\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-6x+4\right)\)
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
a) x2 + 2x - 8 = x2 - 2x + 4x - 8 = x(x - 2) + 4(x - 2) = (x - 2)(x - 4)
b) x2 + 5x + 6 = x2 + 2x + 3x + 6 = x(x + 2) + 3(x + 2) = (x + 2)(x + 3)
c) 4x2 - 12x + 8 = 4x2 - 4x - 8x + 8 = 4x(x - 1) - 8(x - 1) = (x - 1)(4x - 8)
d) 3x2 + 8xy + 5y2 = 3x2 + 3xy + 5xy + 5y2 = 3x(x + y) + 5y(x + y) = (x + y)(3x + 5y)
a) x2 + 2x - 8 = x2 - 2x + 4x - 8 = x( x - 2 ) + 4( x - 2 ) = ( x - 2 )( x + 4 )
b) x2 + 5x + 6 = x2 + 2x + 3x + 6 = x( x + 2 ) + 3( x + 2 ) = ( x + 2 )( x + 3 )
c) 4x2 - 12x + 8 = 4( x2 - 3x + 2 ) = 4( x2 - x - 2x + 2 ) = 4[ x( x - 1 ) - 2( x - 1 ) ] = 4( x - 1 )( x - 2 )
d) 3x2 + 8xy + 5y2 = 3x2 + 3xy + 5xy + 5y2 = 3x( x + y ) + 5y( x + y ) = ( x + y )( 3x + 5y )
b. x4 - x2 - 2x - 1
=x4-(x2+2x+1)
=x4-(x+1)2
=(x2-x-1)(x2+x+1)
d. ( x2 + 3x + 1 ) ( x2 + 3x - 3 ) - 5
Đặt x2+3x=y
=> (y+1)(y-3)-5=y2-2y-8=(y-1)2-9
=(y-4)(y+2)
=(x2+3x-4)(x2+3x+2)=(x-1)(x+4)(x+1)(x+2)
2. Đặt \(x-1996=t\)
\(\Rightarrow\left(x-1996\right)^3+\left(x-1997\right)^3-1=t^3+\left(t-1\right)^2-1\)
\(=t^3+t^2-2t+1-1=t^3+t^2-2t=t\left(t^2+t-2\right)\)
\(=t.\left[\left(t^2-t\right)+\left(2t-2\right)\right]=t\left[t\left(t-1\right)+2\left(t-1\right)\right]\)
\(=t\left(t-1\right)\left(t+2\right)=\left(x-1996\right)\left(x-1996-1\right)\left(x-1996+2\right)\)
\(=\left(x-1996\right)\left(x-1997\right)\left(x-1994\right)\)
1. Đặt x2 + 4x + 8 = y
bthuc ⇔ y2 + 3xy + 2x2
= y2 + xy + 2xy + 2x2
= ( xy + y2 ) + ( 2x2 + 2xy )
= y( x + y ) + 2x( x + y )
= ( x + y )( y + 2x )
= ( x + x2 + 4x + 8 )( x2 + 4x + 8 + 2x )
= ( x2 + 5x + 8 )( x2 + 6x + 8 )
= ( x2 + 5x + 8 )( x2 + 2x + 4x + 8 )
= ( x2 + 5x + 8 )[ x( x + 2 ) + 4( x + 2 ) ]
= ( x2 + 5x + 8 )( x + 2 )( x + 4 )
2. Đặt t = x - 1996
bthuc ⇔ t3 + ( t - 1 )2 - 1
= t3 + t2 - 2t + 1 - 1
= t3 + t2 - 2t
= t( t2 + t - 2 )
= t( t2 - t + 2t - 2 )
= t( t - 1 )( t + 2 )
= ( x - 1996 )( x - 1996 - 1 )( x - 1996 + 2 )
= ( x - 1996 )( x - 1997 )( x - 1994 )
3. 4( x2 + 15x + 59 )( x2 + 18x + 72 ) - 3x2 < bó tay :)) >
Đặt x2 + 4x + 8 = A. Ta sẽ được:
A2 + 3xA + 2x2
= A2 - xA - 2xA + 2x2
= A(A-x) - 2x(A-x)
= (A-x)(A-2x)
= (x2+3x+8)(x2+2x+8)