Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-25-4xy+4y^2\)
\(=\left(x^2-4xy+4y^2\right)-25\)
\(=\left[x^2-2\cdot x\cdot2y+\left(2y\right)^2\right]-25\)
\(=\left(x-2y\right)^2-5^2\)
\(=\left(x-2y-5\right)\cdot\left(x-2y+5\right)\)
a) \(4x^2-4xy+y^2-9\)
\(=\left(2x-y\right)^2-3^2\)
\(=\left(2x-y+3\right)\left(2x-y-3\right)\)
b) \(x^2-36+4xy+4y^2\)
\(=\left(4y^2+4xy+x^2\right)-36\)
\(=\left(2y+x\right)^2-6^2\)
\(=\left(2y+x+6\right)\left(2y+x-6\right)\)
c) \(9x^2-12xy-25+4y^2\)
\(=\left(9x^2-12xy+4y^2\right)-25\)
\(=\left(3x-2y\right)^2-5^2\)
\(=\left(3x-2y+5\right)\left(3x-2y-5\right)\)
d) \(25x^2+10x-4y^2+1\)
\(=\left(25x^2+10x+1\right)-4y^2\)
\(=\left(5x+1\right)^2-\left(2y\right)^2\)
\(=\left(5x+2y+1\right)\left(5x-2y+1\right)\)
a, x2+2xy+y2+2x+2y-15
<=> (x+y )2+2(x+y)+1-16
Đặt x+y =a
<=> a2+2a+1-42
<=> (a+1)2-42
<=> (a+5)(a-3) =>( x+y+5)(x+y-3)
b, x2-4xy+4y2-2x-4y-35
<=> (x-2y)2-2(x-2y)+1-36
Đặt (x-2y) =b
=> b2-2b+1-62
<=> (b-1)2-62
<=> (b-7)(b+5)=> (x-2y-7)(x-2y+5)
c,
a,A= x^2+2xy+y^2+2x+2y-15
= (x+y)^2+(x+y)-15
Đặt x+y=a, ta có:
A=a^2+2a-15
=a^2+2a+1-16
=(a+1)^2-4^2
=(a+1+4)(a+1-4)
=(a+5)(a-3)
Thay a=x+y, ta có: A=(x+y+5)(x+y-3).
bạn hoàng tính như nào mà ra đc dòng cuối vậy?
\(x^2+4y^2+4xy-10x-20y+25\)
\(=\left(x^2-10x+25\right)+\left(4xy-20y\right)+4y^2\)
\(=\left(x-5\right)^2+4y\left(x-5\right)+4y^2\)
\(=\left(x-5\right)\left(x-5+4y\right)+4y^2\)