Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(x^6-y^6\)\(=\left(x^3\right)^2-\left(y^3\right)^2\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
đúng 100% bài này mik mới vừa làm nhà cô
(x+y)2-(x+y)-6
=(x+y)2+2.(x+y)-3.(x+y)-6
=(x+y)(x+y+2)-3.(x+y+2)
=(x+y+2)(x+y-3)
\(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right).\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1-3xy\right]\)
\(=\left(x+y-1\right).\left[x^2+2xy+y^2+x+y+1-3xy\right]\)
\(=\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\)
Chúc bạn học tốt.
\(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)
\(\Leftrightarrow\left(x+y-1\right)\left(\left(x+y\right)^2+\left(x+y\right).1+1^2\right)-3xy\left(x+y-1\right)\)
\(\Leftrightarrow\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)
\(\Leftrightarrow\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)
\(x^3-7x-6=x^3+3x^2+2x-3x^2-9x-6\)
\(=x\left(x^2+3x+2\right)-3\left(x^2+3x+2\right)\)
\(=\left(x-3\right)\left(x^2+3x+2\right)\)
\(=\left(x-3\right)\left(x^2+2x+x+2\right)\)
\(=\left(x-3\right)\left[x\left(x+2\right)+\left(x+2\right)\right]\)
\(=\left(x-3\right)\left(x+1\right)\left(x+2\right)\)
x-3=0 x=3 | x+1=0 x=-1 | x+2=0 x=-2 |
\(x^6-64x^{12}=\left(x^3\right)^2-\left(8x^6\right)^2=\left(x^3-8x^6\right)\left(x^3+8x^6\right).\)
\(=x^6\left(1-8x^3\right)\left(1+8x^3\right)=x^6\left(1-2x\right)\left(1+2x+4x^2\right)\left(1+2x\right)\left(1-2x+4x^2\right)\)
x3-7x+6
=x3+3x2-3x2-9x+2x+6
=x2(x+3)-3x(x+3)+2(x+3)
=(x2-3x+2)(x+3)
=(x2-2x-x+2)(x+3)
=[x(x-2)-(x-2)](x+3)
=(x-1)(x-2)(x+3)
\(x^3-7x+6\)
\(=x^3-x-6x+6\)
\(=\left(x^3-x\right)-\left(6x+6\right)\)
\(=x.\left(x^2-1\right)-6.\left(x+1\right)\)
\(=x.\left(x+1\right)\left(x-1\right)-6.\left(x+1\right)\)
\(=\left(x+1\right).\left[x.\left(x-1\right)-6\right]\)
\(=\left(x+1\right)\left(x^2-x-6\right)\)
\(x^3+6x^2+11x+6=x^3+x^2+5x^2+5x+6x+6\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)=\left(x+1\right)\left(x^2+5x+6\right)\)
\(=\left(x+1\right)\left(x^2+2x+3x+6\right)=\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
\(x^6-y^6\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
x6 - y6
= ( x3 )2 - ( y3 ) 2
= ( x3 + y3) ( x3 - y3 )
= ( x - y ) ( x2 + xy + y2 ).( x + y ) ( x2 - xy + y2 )