Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^6-x^4+2x^3+2x^2\)
\(=x^2\left(x^4-x^2+2x+2\right)\)
\(=x^2\left[x^4-2x^3+x^2+2x^3-4x^2+2x+2x^2-4x+2\right]\)
\(=x^2\left[x^2\left(x^2-2x+1\right)+2x\left(x^2-2x+1\right)+2\left(x^2-2x+1\right)\right]\)
\(=x^2\left(x^2-2x+1\right)\left(x^2+2x+2\right)\)
\(=x^2\left(x-1\right)^2\left(x^2+2x+2\right)\)
a) \(x^4-2x^3+2x-1\)
\(=x^4-x^3-x^3+2x-2+1\)
\(=\left(x^4-x^3\right)+\left(2x-2\right)-\left(x^3-1\right)\)
\(=x^3\left(x-1\right)+2\left(x-1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(x^3+2-x^2-x-1\right)\)
\(=\left(x-1\right)\left(x^3-x^2-x+1\right)\)
\(=\left(x-1\right)\left[\left(x^3-x^2\right)-\left(x-1\right)\right]\)
\(=\left(x-1\right)\left[x^2\left(x-1\right)-\left(x-1\right)\right]\)
\(=\left(x-1\right)\left(x^2-1\right)\left(x-1\right)\)
\(=\left(x-1\right)^2\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)^3\left(x+1\right)\)
b) \(x^4+2x^3+2x^2+2x+1\)
\(=\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)\)
\(=\left(x^2+1\right)^2+2x\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+1+2x\right)\)
\(=\left(x^2+1\right)\left(x+1\right)^2\)
x^4-x^3-x^2+2x-2
=(x^4-x^3)-(x^2-2x+2)
=x^3(x-1)-(x-1)^2
=(x^3-x-1)*(x-1)
\(x^4-2x^3-2x^2-2x-3\)
=\(x^4+x^3-3x^3-3x^2+x^2+x-3x-3\)
=\(x^3\left(x+1\right)-3x^2\left(x+1\right)+x\left(x+1\right)-3\left(x+1\right)\)
=\(\left(x+1\right)\left(x^3-3x^2+x-3\right)\)
=\(\left(x+1\right)\left[x^2\left(x-3\right)+\left(x-3\right)\right]\)
=\(\left(x+1\right)\left(x-3\right)\left(x^2+1\right)\)
Ta có : \(x^4+x^3+2x^2+x+1\)
\(=x^4+x^3+x^2+x^2+x+1\)
\(=x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2+1\right)\)
x4 + 2x3 + x2 - y2
= ( x4 + 2x3 + x2 ) - y2
= [ ( x2 )2 + 2.x2.x + x2 ] - y2
= ( x2 + x )2 - y2
= ( x2 + x - y )( x2 + x + y )
\(=x^2\left(x^2+2x+1\right)-y^2\)
\(=x^2\left(x+1\right)^2-y^2\)
\(=x^2\left(x+1-y\right)\left(x+1+y\right)\)
\(x^4+2x^3+3x^2+2x+1.\)
\(=x^4+x^3+x^3+x^2+x^2+x^2+x+x+1\)
\(=x^4+x^3+x^2+x^3+x^2+x+x^2+x+1\)
\(=x^2\left(x^2+x+1\right)+x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x+1\right)^2+x\left(x+1\right)^2+\left(x+1\right)^2\)
\(=\left(x+1\right)^2\left(x^2+x+1\right)\)
\(=\left(x+1\right)^2\left(x+1\right)^2\)
\(=\left(x+1\right)^4\)
câu b tớ thêm chút
a) x8+3x4+4
=x8-x4+4x4+4
=(x4-1)(x4+1)+4.(x4+1)
=(x4+1)(x4-1+4)
=(x4+1)(x4+3)
b) x6-x4-2x3+2x2
=x4.(x2-1)-2x2.(x-1)
=x4.(x-1)(x+1)-2x2(x-1)
=x2.(x-1)[x2(x+1)-2]
=x2.(x-1)(x3+x2-2)
=x2.(x-1)(x3-1+x2-1)
=x2.(x-1)[(x-1)(x2+x+1)+(x-1)(x+1)]
=x2.(x-1)(x-1)(x2+x+1+x+1)
=x2.(x-1)2.(x2+2x+2)