K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2016

\(x^4-2x^3-2x^2-2x-3\)

=\(x^4+x^3-3x^3-3x^2+x^2+x-3x-3\)

=\(x^3\left(x+1\right)-3x^2\left(x+1\right)+x\left(x+1\right)-3\left(x+1\right)\)

=\(\left(x+1\right)\left(x^3-3x^2+x-3\right)\)

=\(\left(x+1\right)\left[x^2\left(x-3\right)+\left(x-3\right)\right]\)

=\(\left(x+1\right)\left(x-3\right)\left(x^2+1\right)\)

18 tháng 6 2016

biểu thức ko thẻ khai trỉn bn xem lại đề

15 tháng 10 2016

a) \(x^4-2x^3+2x-1\)

\(=x^4-x^3-x^3+2x-2+1\)

\(=\left(x^4-x^3\right)+\left(2x-2\right)-\left(x^3-1\right)\)

\(=x^3\left(x-1\right)+2\left(x-1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x-1\right)\left(x^3+2-x^2-x-1\right)\)

\(=\left(x-1\right)\left(x^3-x^2-x+1\right)\)

\(=\left(x-1\right)\left[\left(x^3-x^2\right)-\left(x-1\right)\right]\)

\(=\left(x-1\right)\left[x^2\left(x-1\right)-\left(x-1\right)\right]\)

\(=\left(x-1\right)\left(x^2-1\right)\left(x-1\right)\)

\(=\left(x-1\right)^2\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)^3\left(x+1\right)\)

b) \(x^4+2x^3+2x^2+2x+1\)

\(=\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)\)

\(=\left(x^2+1\right)^2+2x\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+1+2x\right)\)

\(=\left(x^2+1\right)\left(x+1\right)^2\)

6 tháng 10 2018

      \(x^6-x^4+2x^3+2x^2\)

\(=x^2\left(x^4-x^2+2x+2\right)\)

\(=x^2\left[x^4-2x^3+x^2+2x^3-4x^2+2x+2x^2-4x+2\right]\)

\(=x^2\left[x^2\left(x^2-2x+1\right)+2x\left(x^2-2x+1\right)+2\left(x^2-2x+1\right)\right]\)

\(=x^2\left(x^2-2x+1\right)\left(x^2+2x+2\right)\)

\(=x^2\left(x-1\right)^2\left(x^2+2x+2\right)\)

29 tháng 1 2019

\(x^4+2x^3+3x^2+2x+1.\)

\(=x^4+x^3+x^3+x^2+x^2+x^2+x+x+1\)
\(=x^4+x^3+x^2+x^3+x^2+x+x^2+x+1\)

\(=x^2\left(x^2+x+1\right)+x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x+1\right)^2+x\left(x+1\right)^2+\left(x+1\right)^2\)

\(=\left(x+1\right)^2\left(x^2+x+1\right)\)

\(=\left(x+1\right)^2\left(x+1\right)^2\)

\(=\left(x+1\right)^4\)

29 tháng 1 2019

@wi

\(x^2+x+1=\left(x+1\right)^2???\)

\(x^2+2x+1=\left(x+1\right)^2\)chứ

8 tháng 8 2018

\(x^3+2x^2+2x+1=\left(x^3+1\right)+\left(2x^2+2x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

\(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)

\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

\(x^4+2x^3+2x^2+2x+1=x^4+x^2+2x^3+x^2+2x+1\)

\(=x^2\left(x^2+1\right)+2x\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+2x+1\right)\)

\(=\left(x^2+1\right)\left(x+1\right)^2\)

\(x^4-2x^3+2x-1=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1-2x\right)=\left(x^2-1\right)\left(x-1\right)^2\)

8 tháng 8 2018

\(x^3+2x^2+2x+1=\left(x^3+x^2\right)+\left(x^2+x\right)+\left(x+1\right)\)

                                    \(=x^2.\left(x+1\right)+x.\left(x+1\right)+\left(x+1\right)\)

                                   \(=\left(x+1\right).\left(x^2+x+1\right)\)

\(x^3-4x^2+12x-27\)

\(=\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(9x-27\right)\)

\(=x^2.\left(x-1\right)-3x.\left(x-1\right)+9.\left(x-3\right)\)

\(=\left(x-1\right).\left(x^2-3x\right)+9.\left(x-3\right)\)

\(=x.\left(x-1\right).\left(x-3\right)+9.\left(x-3\right)\)

\(=\left(x-3\right)\left[x.\left(x-1\right)+9\right]\)

19 tháng 8 2017

a)45+x3-5x2-9x

(45-9x)+(x3-5x2)

9(5-x)+x2(x-5)

(9-x2)(5-x)

(3-x)(3+x)(5-x)

b)x4-2x3-2x2-2x-3

x3(x-2)-2x(x-2)-3

(x-2)(x3-2x)-3

x

15 tháng 10 2016

\(=x^3+1+2x^2+2x\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1+2x\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

26 tháng 11 2016

x^4-x^3-x^2+2x-2

=(x^4-x^3)-(x^2-2x+2)

=x^3(x-1)-(x-1)^2

=(x^3-x-1)*(x-1)

26 tháng 11 2016

X4-X3-X2+2X -2= (X4-X3-X2)+(2X-2) = X2(X2-1-X)+2(X-1)  = X2((X-1)(X+1)-X) +2(X-1) = X3+X2-X3(X-1)+2(X-1) = X2(X-1)-X3(X-1)+2(X-1)

=(X2-X3+2)(X-1)