Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x3-7x+6
=x3+3x2-3x2-9x+2x+6
=x2(x+3)-3x(x+3)+2(x+3)
=(x2-3x+2)(x+3)
=(x2-2x-x+2)(x+3)
=[x(x-2)-(x-2)](x+3)
=(x-1)(x-2)(x+3)
\(x^3-7x+6\)
\(=x^3-x-6x+6\)
\(=\left(x^3-x\right)-\left(6x+6\right)\)
\(=x.\left(x^2-1\right)-6.\left(x+1\right)\)
\(=x.\left(x+1\right)\left(x-1\right)-6.\left(x+1\right)\)
\(=\left(x+1\right).\left[x.\left(x-1\right)-6\right]\)
\(=\left(x+1\right)\left(x^2-x-6\right)\)
Vì mình mới họ định lí mới nên minhfm uốn làm thử nếu cậu không hiểu tì hỏi mình để mình làm cách bình thường .
a ) Áp dụng định lí Bezout :
Đặt \(f\left(x\right)=x^3-7x-6,\) ta thấy \(f\left(-1\right)=0\) nên \(-1\) là một ước của \(f\left(x\right)\).
Vậy \(f\left(x\right)\) chia hết cho \(\left(x+1\right)\). Ta có : \(f\left(x\right)=\left(x+1\right)\left(x^2-x-6\right)\)
\(x^2-x-6=\left(x+2\right)\left(x-3\right)\).
Kết quả \(f\left(x\right)=\left(x+1\right)\left(x+2\right)\left(x-3\right)\)
b ) Áp dụng định lí Bezout :
Đặt \(f\left(x\right)=x^3-19x-30.\)Xét một số ước của 30 , ta được \(f\left(-2\right)=0\).
Ta chia \(f\left(x\right)\) cho \(\left(x+2\right);f\left(x\right)=\left(x+2\right)\left(x^2-2x-15\right)\)
\(x^2-2x-15\) nhận \(x=5\) làm nghiệm .
Do vậy \(f\left(x\right)=\left(x+2\right)\left(x+3\right)\left(x-5\right)\)
Chúc bạn học tốt
\(-x^2+7x-6=-x^2+6x+x-6=-x\left(x-6\right)+\left(x-6\right)=\left(1-x\right)\left(x-6\right)\)
Ta có:\(x^3-7x-6=\left(x^3-3x^2\right)+\left(3x^2-9x\right)+\left(2x-6\right)\)
\(=\left(x-3\right)\left(x^2+3x+2\right)=\left(x-3\right)\left(x^2+2x+x+2\right)\)
\(=\left(x-3\right)\left(x+2\right)\left(x+1\right)\)
=x3-x-6x-6
=(x3-x)-(6x-6)
=x(x2-1)-6(x-1)
=x(x-1)(x+1)-6(x-1)
=(x-1)(x2+1-6)
\(x^2+7x+6\)
\(=x^2+x+6x+6\)
\(=x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right).\left(x+6\right)\)
\(x^3-5x^2-14x\)
\(=x^3+2x^2-7x^2-14x\)
\(=x^2\left(x+2\right)-7x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-7x\right)\)
\(=x\left(x+2\right)\left(x-7\right)\)
\(x^3-7x-6\)
\(=x^3+x^2-x^2-x-6x-6\)
\(=x^2\left(x+1\right)-x\left(x+1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-6\right)\)
\(=\left(x+1\right)\left(x^2+2x-3x-6\right)\)
\(=\left(x+1\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\left(x-3\right)\)
\(x^3-19x-30\)
\(=x^3-5x^2+5x^2-25x+6x-30\)
\(=x^2\left(x-5\right)+5x\left(x-5\right)+6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x-5\right)\left(x+3\right)\left(x+2\right)\)
\(=2x^3+2x^2-9x^2-9x+10x+10\)
\(=2x^2\left(x+1\right)-9x\left(x+1\right)+10\left(x+1\right)\)
\(=\left(x+1\right)\left(2x^2-9x+10\right)\)
\(=\left(x+1\right)\left[\left(2x^2-4x\right)-\left(5x-10\right)\right]\)
\(=\left(x+1\right)\left[2x\left(x-2\right)-5\left(x-2\right)\right]\)
\(=\left(x+1\right)\left(x-2\right)\left(2x-5\right)\)
\(x^3-7x-6=x^3+3x^2+2x-3x^2-9x-6\)
\(=x\left(x^2+3x+2\right)-3\left(x^2+3x+2\right)\)
\(=\left(x-3\right)\left(x^2+3x+2\right)\)
\(=\left(x-3\right)\left(x^2+2x+x+2\right)\)
\(=\left(x-3\right)\left[x\left(x+2\right)+\left(x+2\right)\right]\)
\(=\left(x-3\right)\left(x+1\right)\left(x+2\right)\)
x-3=0
x=3
x+1=0
x=-1
x+2=0
x=-2
x³ -7x +6
= x³ -x²+x²-x-6x+6
= x²(x-1)+x(x-1)-6(x-1)
= (x-1)(x² +x-6)
= (x-1)(x²-2x+3x-6)
=(x-1)(x-2)(x+3)