\(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2018

a) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)

\(=\left[\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3\right]-\left(y^2+z^2\right)^3\)

\(=\left(x^2+y^2+z^2-x^2\right)\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)+\left(z^2-x^2\right)^2\right]-\left(y^2+z^2\right)^3\)

\(=\left(y^2+z^2\right)\left(x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4\right)-\left(y^2+z^2\right)^3\)

\(=\left(y^2+z^2\right)\left[x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4-\left(y^2+z^2\right)^2\right]\)

\(=\left(y^2+z^2\right)\left(x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4-y^4-2y^2z^2-z^4\right)\)

\(=\left(y^2+z^2\right)\left(3x^4+3x^2y^2-3x^2z^2-3y^2z^2\right)\)

   = 3(y2+z2)(x4+x2y2-x2z2-y2z2)

   = 3(y2+z2)[x2(x2+y2)-z2(x2+y2)]

   = 3(y2+z2)(x2-z2)(x2+y2)

   = 3(y2+z2)(x-z)(x+z)(x2+y2)

b) \(\left(x+y\right)^3-x^3-y^3\)

\(=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)

\(=3x^2y+3xy^2=3xy\left(x+y\right)\)

c) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2.z+3\left(x+y\right).z^2+z^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2.z+3\left(x+y\right).z^2-\left(x^3+y^3\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2+3\left(x+y\right).z+3z^2\right]-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2+3xz+3yz+3z^2-x^2+xy-y^2\right)\)

  = (x+y)[3xy+3xz+3yz+3z

  = 3(x+y)(xy+xz+yz+z2)

  = 3(x+y)[x(y+z)+z(y+z)]

  = 3(x+y)(x+z)(y+z)

28 tháng 8 2018

a) \(\left(x^2+y^2\right)^3+\left(z^2-x^3\right)-\left(y^2+z^2\right)^3\)

\(=x^6+3x^4y^2+3x^4y^2+y^6+z^2+-x^2+-y^6+-3y^4z+-3y^2z^4+-z^6\)

\(=x^6+3x^4y^2+3x^2y^4+-3y^4z^4+-z^6+-x^2+z^2\)

b) \(\left(x+y\right)^3-x^3-y^3\)

\(=x^3+3x^2y+3xy^2+y^3+-x^3+-y^3\)

\(=\left(x^3+-x^3\right)+\left(3x^2y\right)+\left(3xy^2\right)+\left(y^3+-y^3\right)\)

\(=3x^2y+3xy^2\)

c) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=x^3+3x^2y+3x^2z+3xy^2+6xyz+3xz^2+y^3+3y^2z+3yz^2+z^2-x^3-y^3-z^3\)

\(=3x^2y+3x^2z+3xy^2+3xy^2+6xyz+3xz^2+3y^2z+3yz^2\)

P/s: Ko chắc

5 tháng 11 2016

Biến đổi : \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3\) theo công thức tổng của hai lập pương , ta được :

\(\left(y^2+z^2\right)\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)+\left(z^2-x^2\right)^2\right]\)

Thay vào \(A\),ta có : \(A=\left(y^2+z^2\right).B\).Trong đó :

\(B=\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)\right]+\left[\left(z^2-x^2\right)^2-\left(y^2+z^2\right)^2\right]\)

\(=\left[\left(x^2+y^2\right)\left(2x^2+y^2-z^2\right)\right]+\left[\left(2z^2-x^2+y^2\right)\left(-x^2-y^2\right)\right]\)

\(=\left(x^2+y^2\right)\left(3x^2-3z^2\right)\)

Vậy \(A=3\left(y^2+z^2\right)\left(x^2+y^2\right)\left(x^2-z^2\right)\).

 

2 tháng 8 2016

a)(x+y)2-(x-y)2

=(x+y-x+y)(x+y+x-y)

=2y.2x=4xy

b)(3x+1)2-(x+1)2

=(3x+1-x-1)(3x+1+x+1)

=2x.(4x+2)

=4x(2x+1)

c) x3+y3+z3-3xyz

= (x+y)3- 3xy(x+y) +z3-3xyz

=(x+y+z)( x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)

=(x+y+z)(x2+y2+z2-xy-xz-yz)

4 tháng 8 2016

Phân tích đa thức sau thành nhân tử :

a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

b) \(x^3+y^3+z^3-3xyz\)

23 tháng 9 2016

a) x3 + (a+b+c)x2+ (ab+ac+bc)x +abc

= x3 +ax2+bx2+cx2+abx+acx+bcx+abc

=x3+cx2+abx+abc+ax2+acx+bx2+bcx

=x2 (x+c) + ab (x+c) +ax (x+c) +bx (x+c)

= (x+c) (x2+ab+ax+bx)

= (x+c) { x(x+b)+a(x+b)}

=(x+c) (x+b) (x+a)

6 tháng 11 2015

(x+y+z)2 - x2-y2-z2 = x2+y2+z2+2xy+2yz+2zx -x2-y2-z2= 2(xy+yz+zx)

6 tháng 11 2015

cứ lên mạng gõ cả bài ra,,hoặc vô phần nâng cao là có

14 tháng 8 2017

\(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=-y^3-xy^2+x^2y+x^3-z^3-yz^2+y^2z+y^3-x^3-zx^2+z^2x+z^3\)

\(=-xy^2+x^2y-yz^2+y^2z-zx^2+z^2x\)

\(=\left(x-y\right)\left(z-x\right)\left(z-y\right)\)