K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

Đặt \(x+y-z=a;x-y+z=b;y+z-x=c\)

Ta có:\(A=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(A=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)

\(A=\left(a+b\right)^3+3\left(a+b\right)\cdot c\cdot\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(A=a^3+b^3+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(A=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(A=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Hay \(A=3\cdot2x\cdot2y\cdot2z\)

\(A=24xyz\)

5 tháng 11 2016

Biến đổi : \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3\) theo công thức tổng của hai lập pương , ta được :

\(\left(y^2+z^2\right)\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)+\left(z^2-x^2\right)^2\right]\)

Thay vào \(A\),ta có : \(A=\left(y^2+z^2\right).B\).Trong đó :

\(B=\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)\right]+\left[\left(z^2-x^2\right)^2-\left(y^2+z^2\right)^2\right]\)

\(=\left[\left(x^2+y^2\right)\left(2x^2+y^2-z^2\right)\right]+\left[\left(2z^2-x^2+y^2\right)\left(-x^2-y^2\right)\right]\)

\(=\left(x^2+y^2\right)\left(3x^2-3z^2\right)\)

Vậy \(A=3\left(y^2+z^2\right)\left(x^2+y^2\right)\left(x^2-z^2\right)\).

 

16 tháng 7 2017

a.

\(5x^2\left(x-2y\right)-15x\left(x-2y\right)\)

\(=\left(x-2y\right)\left(5x^2-15x\right)\)

\(=5x\left(x-2y\right)\left(x-3\right)\)

b. 

\(3\left(x-y\right)-5x\left(y-x\right)\)

\(=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(x-y\right)\left(3+5x\right)\)

16 tháng 7 2017

\(a,5x^2\left(x-2y\right)-15x\left(x-2y\right)\) 

\(=5x\left(x-2y\right)\left(x-3\right)\) 

\(b,3\left(x-y\right)-5x\left(y-x\right)=3\left(x-y\right)+5x\left(x-y\right)\) 

\(=\left(x-y\right)\left(3+5x\right)\)

Chúc bạn học tốt!