Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\\ =3\left(x^4-x+x^2+x+1\right)-\left(x^2+x+1\right)^2\)
\(=3\left[\left(x^4-x\right)+\left(x^2+x+1\right)\right]-\left(x^2+x+1^2\right)\)
\(=3\left[x\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]-\left(x^2+x+1\right)^2\)
\(=3\left(x^2+x+1\right)\left(x^2-x+1\right)+\left(x^2+x+1\right)^2\)
\(=\left(x^2+x+1\right)\left(3x^2-3x+3+x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(4x^2-2x+2\right)\\ =2\left(x^2+x+1\right)\left(x^2-x+1\right)\)
\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)\)
\(=3\left[\left(x^4+x^3+x^2\right)-\left(x^3-x^2-x\right)+\left(x^2+x+1\right)\right]-\left(x^2+x+1\right)^2\)
\(=3\left[x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]-\left(x^2+x+1\right)^2\)
\(=3\left(x^2+x+1\right)\left(x^2-x+1\right)-\left(x^2+x+1\right)^2\)
\(=\left(x^2+x+1\right)\left[3\left(x^2-x+1\right)-\left(x^2+x+1\right)\right]\)
\(=\left(x^2+x+1\right)\left(3x^2-3x+3-x^2-x-1\right)\)
\(=\left(x^2+x+1\right)\left(2x^2-4x+2\right)\)
\(=2\left(x^2+x+1\right)\left(x^2-2x+1\right)\)
\(=2\left(x^2+x+1\right)\left(x-1\right)^2\)
(x - 5)2 - 4(x - 3)2 + 2(2x - 1)(x - 5) + (2x - 1)2
= [(x - 5)2 + 2(2x - 1)(x - 5) + (2x - 1)2) - [2(x - 3)]2
= (x - 5 + 2x - 1)2 - (2x - 6)2
= (3x - 6)2 - (2x - 6)2
= (3x - 6 - 2x + 6)(3x - 6 + 2x - 6) = x(5x - 12)
( x - 5 )2 - 4( x - 3 )2 + 2( 2x - 1 )( x - 5 ) + ( 2x - 1 )2
= [ ( x - 5 )2 + 2( 2x - 1 )( x - 5 ) + ( 2x - 1 )2 ] - 22( x - 3 )2
= ( x - 5 + 2x - 1 )2 - ( 2x - 6 )2
= ( 3x - 6 )2 - ( 2x - 6 )2
= ( 3x - 6 - 2x + 6 )( 3x - 6 + 2x - 6 )
= x( 5x - 12 )
phân tích đa thức thành nhân tử \(x^2\cdot\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(x^2\cdot\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)
Lời giải:
$3(x^4+x^2+1)(x^2+x+1)^2$
$=3[(x^4+2x^2+1)-x^2](x^2+x+1)^2$
$=3[(x^2+1)^2-x^2](x^2+x+1)^2$
$=3(x^2+1-x)(x^2+1+x)(x^2+x+1)^2$
$=3(x^2-x+1)(x^2+x+1)^3$
\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)
\(=\left(x-1\right)\left(x+1\right)\left(x+4+1\right)\left(x+4-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+5\right)\left(x-3\right)\)
=.= hok tốt!!
Ta có :
\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)
\(=3\left(x^4+x^3+x^2-x^3+1\right)-\left(x^2+x+1\right)^2\)
\(=3\left[\left(x^4+x^3+x^2\right)-\left(x^3-1\right)\right]-\left(x^2+x+1\right)^2\)
\(=3\left[\left(x^2+x+1\right)x^2-\left(x-1\right)\left(x^2+x+1\right)\right]-\left(x^2+x+1\right)^2\)
\(=3\left(x^2+x+1\right)\left(x^2-x+1\right)-\left(x^2+x+1\right)^2\)
\(=\left(x^2+x+1\right)\left[3\left(x^2-x+1\right)-\left(x^2+x+1\right)\right]\)
\(=\left(x^2+x+1\right)\left(3x^2-3x+3-x^2-x-1\right)\)
\(=\left(x^2+x+1\right)\left(2x^2+2-4x\right)\)
\(=2\left(x^2+x+1\right)\left(x^2+1-2x\right)\)
\(=2\left(x^2+x+1\right)\left(x-1\right)^2\)