K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

a) \(=x\left(x-5\right)+\left(x-5\right)^2=\left(x-5\right)\left(x+x-5\right)=\left(x-5\right)\left(2x-5\right)\)

b) \(=x^2-2.x.10+10^2=\left(x-10\right)^2\)

c) \(=x\left(x+3\right)+2\left(x+3\right)=\left(x+3\right)\left(x+2\right)\)

23 tháng 11 2016

a, Dùng phương pháp đổi biến (đầu tiên ghép cặp (x+2) với (x+5) và cặp còn lại, rồi đổi biến)

b, Dùng phương pháp thêm bớt cùng 1 hạng tử 

c,  Dùng phương pháp nhóm hang tử

23 tháng 11 2016

thank nha 

1 tháng 3 2016

a/ x+5x+10x-4

=(x4- 4)+(5x+ 10x)

=(x2+2) (x2-2) + 5x(x2 +2 )

=(x2+2)(x2 -2 +5x)

b/x5 - x+x3 -x2 +x-1

=x4(x-1)+x3(x-1)+(x-1)

=(x-1)(x4+x3+1)

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

16 tháng 8 2015

a) co sai de ko

b)x3-2x2+4x2-8x+3x-6=x2(x-2)+4x(x-2)+3(x-2)=(x-2)(x2+4x+3)=(x-2)(x+3)(x+1)

c)x3-2x2+2x2-4x-3x+6=x2(x-2)+2x(x-2)-3(x-2)=(x-2)(x2+2x-3)=(x-2)(x+3)(x-1)

d)x3-3x2+x2-3x-2x+6=x2(x-3)+x(x-3)-2(x-3)=(x-3)(x2+x-2)=(x-3)(x+2)(x-1)

24 tháng 7 2018

a/ \(x^3-5x^2+8x-4\)

\(\left(x^3-x^2\right)-\left(4x^2-4x\right)+\left(4x-4\right)\)

\(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

\(\left(x-1\right)\left(x^2-4x+4\right)\)

\(\left(x-1\right)\left(x-2\right)^2\)

b/ \(x^3-x^2+x-1\)

\(\left(x^3-x^2\right)+\left(x-1\right)\)

\(x^2\left(x-1\right)+\left(x-1\right)\)

\(\left(x-1\right)\left(x^2+1\right)\)

30 tháng 10 2016

\(x^3-x^2-5x+125\)

\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

\(x^6-x^4-9x^3+9x^2\)

\(=x^4\left(x^2-1\right)-9x^2\left(x-1\right)\)

\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)

\(=x^2\left(x-1\right)\left[x^2\left(x+1\right)-9\right]\)

\(=x^2\left(x-1\right)\left(x^3+x^2-9\right)\)

\(x^4-4x^3+8x^2-16x+16\)

\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)\)

\(=\left(x^2+4\right)\left(x^2+4-4x\right)\)

\(=\left(x^2+4\right)\left(x-2\right)^2\)

\(3a^2-6ab+3b^2-12c^2\)

\(=3\left(a^2-2ab+b^2-4c^2\right)\)

\(=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]\)

\(=3\left(a-b+2c\right)\left(a-b-2c\right)\)

30 tháng 10 2016

cảm ơn bạn nha!eoeo

4 tháng 12 2017

a, = (x^2+10x+25)-y62 = (x+5)^2-y^2 = (x+5-y).(x+5+y)

b, = xy.(x-y)

c, = (x-y).(x+y)+5.(x-y) = (x-y).(x+y+5)

k mk nha