K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2018

Áp dụng HĐT a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)

a, \(x^3+8y^3+27z^3-18xyz=x^3+\left(2y\right)^3+\left(3z\right)^3-3.x.2y.3z\)

\(=\left(x+2y+3z\right)\left[x^2+\left(2y\right)^2+\left(3z\right)^2-x.2y-2y.3z-3z.x\right]\)

\(=\left(x+2y+3z\right)\left(x^2+4y^2+9z^2-2xy-6yz-3xz\right)\)

các bài còn lại tương tự

2 tháng 8 2021

helppp me

18 tháng 11 2018

\(4x^4+4x^3+5x^2+6x+1\)

\(=4x^4+4x^3+5x^2+5x+x+1\)

\(=4x^3.\left(x+1\right)+5x.\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right).\left(4x+5x+1\right)\)

p/s: tớ nghĩ sai đề nên đổi ạ :))

23 tháng 8 2016

1 ) \(a\left(m+n\right)+b\left(m+n\right)\)

   \(=\left(a+b\right)\left(m+n\right)\)

2 ) \(a^2\left(x+y\right)-b^2\left(x+y\right)\)

   \(=\left(a^2-b^2\right)\left(x+y\right)\)

   \(=\left[\left(a-b\right).\left(a+3\right)\right]\left(x+y\right)\)

3 ) \(6a^2-3a+12ab\)

   \(=3a.2a-3a+3a.4b\)

   \(=3a.\left(2a-1+4b\right)\)

4 ) \(2x^2y^4-2x^4y^2+6x^3y^3\)

   \(=2x^2y^2.y^2-2x^2y^2.x^2+2x^2y^2.3xy\)

    \(=2x^2y^2\left(y^2-x^2+3xy\right)\)

5 ) \(\left(x+y\right)^3-x\left(x+y\right)^2\)

      \(=\left(x+y\right)^2.\left(x+y-x\right)\)

      \(=\left(x+y\right)^2.y\)

      

 

23 tháng 8 2016

1)a(m+n)+b(m+n)

=(a+b)(m+n)

2)a2(x+y)-b2(x+y)

=(a2-b2)(x+y)

3)6a2-3a+12ab

=3a.2a-3a.(1-4b)

=3a.(2a-1+4b)

5)(x+y)3-x(x+y)2

=(x+y)(x+y)2-x(x+y)2

=(x+y)2(x+y-x)

 

10 tháng 10 2020

a) \(3^2\left(y-x\right)+6x^2\left(x-y\right)^2\)

\(=3\left(y-x\right)\left[3+2x^2\left(y-x\right)\right]\)

\(=3\left(y-x\right)\left(3+2x^2y-2x^3\right)\)

b) \(x^4-3x^3+3x-1\)

\(=\left(x^4+x^3\right)-\left(4x^3+4x^2\right)+\left(4x^2+4x\right)-\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3-4x^2+4x-1\right)\)

\(=\left(x+1\right)\left[\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(x-1\right)\right]\)

\(=\left(x+1\right)\left(x-1\right)\left(x^2-3x+1\right)\)

10 tháng 7 2017

Khó quá , bó tay 

11 tháng 7 2017

\(\left(x^2-2x+2\right)^4-20x^2\left(x^2-2x+2\right)+64x^4\)

\(=\left[\left(x^2-2x+2\right)^2\right]^2-2.\left(x^2-2x+2\right)^2.10x^2+\left(10x^2\right)^2-36x^4\)

\(=\left[\left(x^2-2x+2\right)^2-10x^2\right]^2-\left(6x^2\right)^2\)\(=\left[\left(x^2-2x+2\right)^2-4x^2\right]\left[\left(x^2-2x+2\right)^2-16x^2\right]\)

\(=\left(x^2-2x+2+2x\right)\left(x^2-2x+2-2x\right)\left(x^2-2x+2-4x\right)\left(x^2-2x+2+4x\right)\)

\(=\left(x^2+2\right)\left(x^2-4x+2\right)\left(x^2-6x+2\right)\left(x^2+2x+2\right)\)

9 tháng 7 2016

a) \(x^3-\frac{1}{4}x=x\left(x^2-\frac{1}{4}\right)=x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)\)

b) \(\left(2x-1\right)^2-\left(x+3\right)^2=\left(2x-1-x-3\right)\left(2x-1+x+3\right)=\left(x-4\right)\left(3x+2\right)\)

28 tháng 8 2016

Ta có :

\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)

\(=3\left(x^4+x^3+x^2-x^3+1\right)-\left(x^2+x+1\right)^2\)

\(=3\left[\left(x^4+x^3+x^2\right)-\left(x^3-1\right)\right]-\left(x^2+x+1\right)^2\)

\(=3\left[\left(x^2+x+1\right)x^2-\left(x-1\right)\left(x^2+x+1\right)\right]-\left(x^2+x+1\right)^2\)

\(=3\left(x^2+x+1\right)\left(x^2-x+1\right)-\left(x^2+x+1\right)^2\)

\(=\left(x^2+x+1\right)\left[3\left(x^2-x+1\right)-\left(x^2+x+1\right)\right]\)

\(=\left(x^2+x+1\right)\left(3x^2-3x+3-x^2-x-1\right)\)

\(=\left(x^2+x+1\right)\left(2x^2+2-4x\right)\)

\(=2\left(x^2+x+1\right)\left(x^2+1-2x\right)\)

\(=2\left(x^2+x+1\right)\left(x-1\right)^2\)