Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3-y^3\right)\left(x^3+y^3\right).\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right).\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(b,9x^2+y^2+6xy=\left(3x\right)^2+2.3x.y+y^2=\left(3x+y\right)^2\)
\(c,6x-9-x^2=-\left(x^2-6x+9\right)=-\left(x^2-2.x.3+3^2\right)=-\left(x-3\right)^2\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) \(x-xy+y-y^2=x\left(1-y\right)+y\left(1-y\right)=\left(x+y\right)\left(1-y\right)\)
b) \(x^2-2x-y^2+1=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)
c) \(4x^2-4xy+y^2=\left(2x\right)^2-2.2x.y+y^2=\left(2x-y\right)^2\)
d) \(9x^3-9x^2y-4x+4y=9x^2\left(x-y\right)-4\left(x-y\right)=\left(9x^2-4\right)\left(x-y\right)=\left(3x-2\right)\left(3x+2\right)\left(x-y\right)\)
e) \(x^3+2+3\left(x^3-2\right)=x^3+2+3x^3-6=4x^3-4=4\left(x^3-1\right)=4\left(x-1\right)\left(x^2+x+1\right)\)
TL:
\(A=9x^2-y^2+6x+1\)
\(=\left(3x-1\right)^2-y^2\)
\(=\left(3x-1+y\right)\left(3x-1-y\right)\)
\(9x^6-12x^7+4x^8\)
\(=x^6\left(4x^2-12x+9\right)\)
\(=x^6.\left(2x-3\right)^2\)
hk
tốt
\(=\left(12x+9x^2+4\right)-\left(6y\right)^2=\left(3x+2\right)^2-\left(6y\right)^2\)
\(=\left(3x+2-6y\right)\left(3x+2+6y\right)\)
k mình cái
12x+9x2+4-36y2
= (9x2+12x+4)-36y2
= (3x+2)2-36y2
= ((3x+2)-6y2)((3x+2)+6y2)
=(3x+2-6y2)(3x+2+6y2)
a) \(x^6-y^6\)
\(=\left(x^3\right)^2-\left(y^3\right)^2\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
b) \(10ab+0,25a^2+100b^2\)
\(=\left(0,5a\right)^2+2\cdot0,5a\cdot10b+\left(10b\right)^2\)
\(=\left(0,5a+10b\right)^2\)
c) \(9x^2-xy+\frac{1}{36}y^2\)
\(=\left(3x\right)^2-2\cdot3x\cdot\frac{1}{6}y+\left(\frac{1}{6}y\right)^2\)
\(=\left(3x-\frac{1}{6}y\right)^2\)