Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(9\left(a+b\right)^2-4\left(a-2b\right)^2\)
\(=\left(3a+3b\right)^2-\left(2a-4b\right)^2\)
\(=\left(3a+3b-2a+4b\right)\left(3a+3b+2a-4b\right)\)
\(=\left(a+7b\right)\left(5a-b\right)\)
b) \(9x^6-12x^7+4x^8\)
\(=x^6\left(9-12x+4x^2\right)\)
\(=x^6\left(2x-3\right)^2\)
c) \(8x^6-27y^3\)
\(=\left(2x^2\right)^3-\left(3y\right)^3\)
\(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)
d) \(\frac{1}{64}x^6-125y^3\)
\(=\left(\frac{1}{4}x^2\right)^3-\left(5y\right)^3\)
\(=\left(\frac{1}{4}x^2-5y\right)\left(\frac{1}{16}x^4+\frac{5}{6}xy+25y^2\right)\)
2/ (b4 - 4b2 + 4) - 9a2 = (b2 - 2)2 - 9a2 = (b2 - 2 + 3a)(b2 - 2 - 3a)
a ) \(x^3+3x^2-3x+1\)
\(=x^3-3x+3x^2-1\)
\(=\left(x-1\right)^3\)
\(x^2+4x+4=\left(x+2\right)^2 \)
\(4x^2-4x+1=\left(2x-1\right)^2\)
\(c\left(x+1\right)-y\left(x+1\right)=\left(x+1\right)\left(c-y\right)\)
\(x^3-3x^2+3x-1+27y^3=\left(x-1\right)^3+27y^3=\left(x-1+3y\right)\left(x^2-2x+1-3xy+3y+9y^2\right)\)
a, x2+2xy+y2+2x+2y-15
<=> (x+y )2+2(x+y)+1-16
Đặt x+y =a
<=> a2+2a+1-42
<=> (a+1)2-42
<=> (a+5)(a-3) =>( x+y+5)(x+y-3)
b, x2-4xy+4y2-2x-4y-35
<=> (x-2y)2-2(x-2y)+1-36
Đặt (x-2y) =b
=> b2-2b+1-62
<=> (b-1)2-62
<=> (b-7)(b+5)=> (x-2y-7)(x-2y+5)
c,
a,A= x^2+2xy+y^2+2x+2y-15
= (x+y)^2+(x+y)-15
Đặt x+y=a, ta có:
A=a^2+2a-15
=a^2+2a+1-16
=(a+1)^2-4^2
=(a+1+4)(a+1-4)
=(a+5)(a-3)
Thay a=x+y, ta có: A=(x+y+5)(x+y-3).
a,
=\(\left(a^2\right)^2-\left(2b\right)^2\)
=\(\left(a^2-2b\right)\left(a^2+2b\right)\)
= \(\left(\left(a-\sqrt{2b}\right)\left(a+\sqrt{2b}\right)\right)\left(a^2+2b\right)\)
c,
=\(4x^4+20x^2+25\)
=\(\left(2x^2\right)^2+2.2x^2.5+5^2\)
=\(\left(2x^2+5\right)^2\)
d,
=\(8x^6-27y^3\)
= \(\left(2x^2\right)^3-\left(3y\right)^3\)
= \(\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)
Câu b đề ghi ko rõ lắm