K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2018

b.10x(x-y)-6y(y-x)=10x(x-y)+6y(x-y)=(10x+6y)(x-y)

16 tháng 11 2018

c.3x2+5y-3xy-5x=(3x2--3xy)-(5x-5y)=3x(x-y)-5(x-y)=(3x-5)(x-y)

23 tháng 11 2018

a,3x2-6x+9x2

=>12x2-6x

=>6x(2x-1)

b,10x(x-y)-6y(y-x)

=>10x(x-y)-6y(-(x-y))

=>10x(x-y)+6y(x-y)

=>2(x-y)(5x+3y)

c,3x2+5y-3xy-5x

=>3x(x-y)-5(x-y)

=>(x-y)(3x-5)

d,3y2-3z2+3x2+6xy

=>3(y2-z2+x2+2xy)

=>3[(y+x)2-z2]

=>3(y+x-z)(y+x+z)

e,16x3+54y3

=>2(8x3+27y3)

=>2(2x+3y)(4x2-6xy+9y2)

g,x2-25-2xy+y2

=>(x-y)2-25

=>(x-y-5)(x-y+5)

h,x5-3x4+3x3-x2

=>x2(x3-3x2+3x-1)

=>x2(x-1)3

Nhớ tick cho mk nhé

23 tháng 11 2018

Phân thức đại số

8 tháng 9 2020

A = xy + y - 2x - 2

= y( x + 1 ) - 2( x + 1 )

= ( x + 1 )( y - 2 )

B = x2 - 3x + xy - 3y

= x( x - 3 ) + y( x - 3 )

= ( x - 3 )( x + y )

C = 3x2 - 3xy - 5x + 5y

= 3x( x - y ) - 5( x - y )

= ( x - y )( 3x - 5 )

D = xy + 1 + x + y

= y( x + 1 ) + ( x + 1 )

= ( x + 1 )( y + 1 )

E = ax - bx + ab - x2

= ( ax - x2 ) + ( ab - bx )

= x( a - x ) + b( a - x )

= ( a - x )( x + b )

F = x2 + ab + ax + bx

= ( ax + x2 ) + ( ab + bx )

= x( a + x ) + b( a + x )

= ( a + x )( x + b )

G = a3 - a2x - ay + xy

= a2( a - x ) - y( a - x )

= ( a - x )( a2 - y )

Bonus : = ( a - x )[ a2 - ( √y )2 ]

             = ( a - x )( a - √y )( a + √y )

H = 2xy + 3z + 6y + xz

= ( 6y + 2xy ) + ( 3z + xz )

= 2y( 3 + x ) + z( 3 + x )

= ( 3 + x )( 2y + z )

8 tháng 9 2020

A = xy + y - 2x - 2 = y(x + 1) - 2(x + 1) = (y - 2)(x + !1

B = x2 - 3x + xy - 3y = x(x - 3) + y(x - 3) = (x + y)(x - 3)

C = 3x2 - 3xy - 5x + 5y = 3x(x - y) - 5(x - y) = (3x - 5)(x - y)

D = xy + 1 + x + y = xy + x + y + 1 = x(y + 1) + (y + 1) = (x + 1)(y + 1)

E = ax - bx + ab - x2 = ax - x2 + ab - bx = a(a - x) - b(a - x) = (a - b)(a - x)

F = x2 + ab + ax + bx = ab + ax + bx + x2 = a(b + x) + x(b + x) = (a + x)(b + x)

G = a3 - a2x - ay + xy = a2(a - x) - y(a - x) = (a2 - y)(a - x)

H = 2xy + 3z + 6y + xz = 2xy + 6y + 3z + xz = 2y(x + 3) + z(x + 3) = (2y + z)(x + 3)

25 tháng 5 2018

Bài làm:

1)3x2 + 5y - 3xy - 5x = (3x2 - 3xy) + (5y - 5x)

= 3x(x - y) + 5(y - x)

= 3x(x - y) - 5(x - y)

(3x - 5)(x - y)

2)3y2 - 3z2 + 3x2 + 6xy = (3x2 + 6xy + 3y2) - 3z2

= (\(\sqrt{3x}\) + \(\sqrt{3y}\))2 - (\(\sqrt{3z}\))2

= (\(\sqrt{3x}\) + \(\sqrt{3y}\) - \(\sqrt{3z}\)).(\(\sqrt{3x}\) + \(\sqrt{3y}\) + \(\sqrt{3z}\))

4)x2 - 25 - 2xy + y2 = (x2 - 2xy + y2) - 25

= (x - y)2 - 52

= (x - y - 5).(x - y + 5)

5)x5 - 3x4 + 3x3 - x2 = x2.(x3 - 3x2 - 3x - 1)

Còn câu 3) Vàng sẽ nghĩ sau :v

26 tháng 5 2018

3. \(16x^3+54x^3\)

\(=2x^3\left(8+27\right)\)

8 tháng 6 2017

a) \(=x^2+2xy+y^2-x^2+y^2=2xy+2y^2=2y\left(x+y\right)\)

b) \(=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

c) \(=3\left[\left(x^2+2xy+y^2\right)-z^2\right]=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)

d) \(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)

e) \(=\left(x-3\right)\left(x^2+3x+9\right)-2x\left(x-3\right)=\left(x-3\right)\left(x^2+x+9\right)\)

f) \(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)=\left(x+5\right)\left(x^2-6x+25\right)\)

8 tháng 6 2017

a) \(\left(x+y\right)^2-\left(x^2-y^2\right)\)

\(=x^2+2xy+y^2-x^2+y^2\)

\(=2y^2+2xy\)

\(=2y\left(x+y\right)\)

c) \(3x^2+6xy+3y^2-3z^2\)

\(=3\left(x^2+2xy+y^2-x^2\right)\)

\(=3\left[\left(x+y\right)^2-z^2\right]\)

\(=3\left(x+y+z\right)\left(x+y-z\right)\)

d) \(\left(2xy+1\right)^2-\left(2x+y\right)^2\)

\(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)

\(=\left[\left(2xy+2x\right)+\left(y+1\right)\right]\left[\left(2xy-2x\right)-\left(y-1\right)\right]\)

\(=\left[2x\left(y+1\right)+\left(y+1\right)\right]\left[2x\left(y-1\right)-\left(y-1\right)\right]\)

\(=\left(2x+1\right)\left(y+1\right)\left(2x-1\right)\left(y-1\right)\)

\(=\left(4x^2-1\right)\left(y^2-1\right)\)

18 tháng 3 2018

\(a,x^2+6x+9\)

\(=x^2+3x+3x+9\)

\(=\left(x^2+3x\right)+\left(3x+9\right)\)

\(=x.\left(x+3\right)+3.\left(x+3\right)\)

\(=\left(x+3\right).\left(x+3\right)\)

\(=\left(x+3\right)^2\)

\(b,10x-25-x^2\)

\(=-\left(x^2-2.5.x+5^2\right)\)

\(=-\left(x-5\right)^2\)

\(c,x^2+4x-y^2+4\)

\(=\left(x^2+2.2.x+2^2\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2-y\right).\left(x+2+y\right)\)

\(d,3x^2+6xy+3y^2-3z^2\)

\(=3.[\left(x^2+2xy+y^2\right)-z^2]\)

\(=3.[\left(x+y\right)^2-z^2]\)

\(=3.\left(x+y-z\right)\left(x+y+z\right)\)

\(e,x^2-2xy+y^2-z^2+2zt-t^2\)

\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)

\(=\left(x-y\right)^2-\left(z-t\right)^2\)

\(=[\left(x-y\right)-\left(z-t\right)].[\left(x-y\right)+\left(z-t\right)]\)

\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)

20 tháng 3 2018

bai tim x bai 5 co