Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2xy+7x+7y+y^2+10\)
\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+\frac{49}{4}-\frac{9}{4}\)
\(=\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}-\frac{9}{4}\)
\(=\left(x+y+\frac{7}{2}\right)^2-\frac{9}{4}\)
\(=\left(x+y+\frac{7}{2}-\frac{3}{2}\right)\left(x+y+\frac{7}{2}+\frac{3}{2}\right)\)
\(=\left(x+y+2\right)\left(x+y+5\right)\)
b)Ta có: x2y+xy2+x+y=2010
<=>xy.x+xy.y+x+y=2010
<=>11x+11y+x+y=2010
<=>12(x+y)=2010
<=>x+y=167,5
=>(x+y)2=28056,25
<=>x2+y2+2xy=28056,25
<=>x2+y2=28034,25
\(a,\)\(x^3-13x-12\)
\(=x^3-x-12x-12\)
\(=x\left(x^2-1\right)-12\left(x+1\right)\)
\(=x\left(x-1\right)\left(x+1\right)-12\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-12\right)\)
\(=\left(x+1\right)\left(x^2-4x+3x-12\right)\)
\(=\left(x+1\right)\left[x\left(x-4\right)+3\left(x+4\right)\right]\)
\(=\left(x+1\right)\left(x-4\right)\left(x+3\right)\)
a) \(x^3-13x-12\)
\(=x^3+x^2-x^2-x-12x-12\)
\(=x^2\left(x+1\right)-x\left(x+1\right)-12\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-12\right)\)
\(=\left(x+1\right)\left(x^2-4x+3x-12\right)\)
\(=\left(x+1\right)\left[x\left(x-4\right)+3\left(x-4\right)\right]\)
\(=\left(x+1\right)\left(x-4\right)\left(x+3\right)\)
b) \(2x^4+3x^3-9x^2-3x+2\)câu này hình như sai đề rồi, bạn xem lại nhen
c) \(x^4-3x^3-6x^2+3x+1\)câu này cx thế, bạn xem lại nha
Phân tích đa thức thành nhân tử:
a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)
b) \(25-x^2+4xy-4y^2=25-\left(x^2-4xy+4y^2\right)=25-\left(x-2y\right)^2\)
\(=\left(5-x+2y\right)\left(5+x-2y\right)\)
Rút gọn biểu thức;
\(A=\left(6x+1\right)^2+\left(3x-1\right)^2-2\left(3x-1\right)\left(6x+1\right)\)
\(=\left[\left(6x+1\right)-\left(3x-1\right)\right]^2=\left(6x+1-3x+1\right)=\left(3x+2\right)^2\)
Tìm a để đa thức.. Bạn chia cột dọ thì da
\(xy+y^2-x-y=\left(xy+y^2\right)-\left(x+y\right)=y\left(x+y\right)-\left(x+y\right)=\left(y-1\right)\left(x+y\right)\)b)\(25-\left(x^2-4xy+4y^2\right)=5^2-\left(x-2y\right)^2=\left(x-2y+5\right)\left(5-x+2y\right)\)
a: \(=\left(x^2+2xy+y^2\right)+7\left(x+y\right)+10\)
\(=\left(x+y\right)^2+7\left(x+y\right)+10\)
\(=\left(x+y+5\right)\left(x+y+2\right)\)
b: \(x^2y+xy^2+x+y=2010\)
\(\Leftrightarrow xy\left(x+y\right)+x+y=2010\)
\(\Leftrightarrow\left(x+y\right)\left(xy+1\right)=2010\)
\(\Leftrightarrow x+y=167.5\)
\(x^2+y^2=\left(x+y\right)^2-2xy=167.5^2-22=28034.25\)
\(a,Sửa:x^2-xy-13x+13y=x\left(x-y\right)-13\left(x-y\right)=\left(x-13\right)\left(x-y\right)\\ b,=\left(x+y\right)^2-\left(2z\right)^2=\left(x+y-2z\right)\left(x+y+2z\right)\\ c,=\left(x^2-2x\right)-\left(3x-6\right)=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)