K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2019

a) x^7+x^2 +1 =x^7 - x^4+x^4 +x^2+1

                       = (x^7 - x^4) +[ (x^2)^2 +x^2 +1]

                        = x^4(x^3 -1)+(x^2 - 1)

                       = x^4 ( x-1)(x^2 +x +1)+ (x-1)(x+1)

                       = (x-1)[ x^4( x^2+x+1)+(x+1)]

                       = (x-1)(x^6 +x^5+x^4+x+1)

b) x^8 +x+1 = x^8 -x^2+x^2 +x+1

                    = (x^8-x^2) +(x^2 +x+1)

                    =x^2(x^6 -1) +(x^2+x+1)

                    =x^2[ (x^3)^2 -1)+(x^2+x+1)

                    = x^2 (x^3-1)(x^3+1) +(x^2 +x+1)

                     = x^2(x-1)(x^2+x+1)(x^3+1) +(x^2 +x+1)

                    = (x^2+x+1)[ x^2(x-1)(x^3+1) +1]

3 tháng 8 2015

Bài 1 :

\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)

Bài 2 :

 \(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)

\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)

=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)

Tick đúng nha 

1 tháng 8 2021

X^2-6+8

27 tháng 10 2016

ủa phần a mình phân tích rồi mà bạn hu hu

 

17 tháng 8 2020

a) \(x^5-x^4-1\)

\(=\left(x^5+x^2\right)-\left(x^4+x\right)-\left(x^2-x+1\right)\)

\(=x^2\left(x^3+1\right)-x\left(x^3+1\right)-\left(x^2-x+1\right)\)

\(=x^2\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3+x^2-x^2-x-1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)

17 tháng 8 2020

b) \(x^8+x^7+1\)

\(=\left(x^8-x^2\right)+\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^6-1\right)+x\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^3-1\right)\left(x^3+1\right)+x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[\left(x^3-x^2\right)\left(x^3+1\right)+\left(x^2-x\right)\left(x^3+1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left[\left(x^3-x\right)\left(x^3+1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

28 tháng 1 2019

\(A=\left(x-1\right)\left(x-2\right)\left(x+7\right)\left(x+8\right)+8\)

\(A=\left[\left(x-1\right)\left(x+7\right)\right]\left[\left(x-2\right)\left(x+8\right)\right]+8\)

\(A=\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8\)

Đặt \(q=x^2+6x-7\)ta có :

\(A=q\left(q-9\right)+8\)

\(A=q^2-9q+8\)

\(A=q^2-q-8q+8\)

\(A=q\left(q-1\right)-8\left(q-1\right)\)

\(A=\left(q-1\right)\left(q-8\right)\)

Thay \(q=x^2+6x-7\)vào A ta được :

\(A=\left(x^2+6x-7-1\right)\left(x^2+6x-7-8\right)\)

\(A=\left(x^2+6x-8\right)\left(x^2+6x-15\right)\)

24 tháng 12 2016

bạn xem lại xem thử có sai đề bài ko

 

24 tháng 12 2016

đề sai nha bạn

mình sửa đề cho:

\(A=\left(x+1\right)\left(x+2\right)\left(x+7\right)\left(x+8\right)+8\)

\(A=\left(x+1\right)\left(x+8\right)\left(x+2\right)\left(x+7\right)+8\)

\(A=\left(x^2+9x+8\right)\left(x^2+9x+14\right)+8\)

Đặt \(x^2+9x+8=a\)

\(\Rightarrow A=a\left(a+6\right)+8=a^2+6a+8=\left(a+2\right)\left(a+4\right)\)

\(\Rightarrow A=\left(x^2+9x+8+2\right)\left(x^2+9x+8+4\right)=\left(x^2+9x+10\right)\left(x^2+9x+12\right)\)

16 tháng 8 2015

\(=x^8-x^6+x^5-x^3+x^2+x^7-x^5+x^4-x^2+x+x^6-x^4+x^3-x+1\)

\(=x^2\left(x^6-x^4+x^3-x+1\right)+x\left(x^6+x^4+x^3-x+1\right)+\left(x^6-x^4+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

phù !!!!!

26 tháng 10 2016

a,(b-a)^2+(a-b)*(3a-2b)-a^2+b^2

=(a-b)^2+(a-b)*(3a-2b)-(a^2-b^2)

=(a-b)^2+(3a-2b)-(a-b)*(a+b)

=(a-b)*(a-b+3a-2b-a-b)

=(a-b)*(3a-4b)

26 tháng 10 2016

b, Đặt x^2-2x+4=a=>x^2-2x+3=a-1

x^2-2x+5=a+1

=>phương trình ban đàu sẽ thành:

(a+1)*(a-1)=8

<=>a^2-1=8

<=>a^2=9

<=>a=3 hoặc a=-3

quay về biến cũ ta có

TH1a=3=>x^2-2x+4=3

<=>x^2-2x+1=0

<=>(x-1)^2=0

<=>x-1=0

<=>x=1

TH2 a=-3=>x^2-2x+4=-3

=>(x^2-2x+1)+6=0

<=>(x-1)^2+6=0

do (x-1)^2>=0 với mọi x=>(x-1)^2+6>0 với mọi x

=> phương trình vô nghiệm

Vậy phương trình có 1 nghiệm là x=1