Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tải ứng dụng PhotoMath về nha. Ứng dụng này sẽ giải toán số chi tiết
a) \(x^3-4x^2-12x+27\)
\(=\left(x^3+27\right)-\left(4x^2+12x\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-7x+9\right)\)
b) \(x^3-3x^2-4x+12\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x^2-4\right)\left(x-3\right)\)
\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
a) \(9x^2+6xy+y^2=\left(3x+y\right)^2\)
b) \(6x-9-x^2=-\left(x-3\right)^2\)
1) \(ab\left(a+b\right)-bc\left(b+c\right)+ac\left(a-c\right)\)
\(=ab\left(a+b\right)-b^2c-bc^2+a^2c-ac^2\)
\(=ab\left(a+b\right)-c\left(b^2-a^2\right)-c^2\left(a+b\right)\)
\(=ab\left(a+b\right)-c\left(a+b\right)\left(a-b\right)-c^2\left(a+b\right)\)
\(=\left(a+b\right)\left(ab-ac+bc-c^2\right)\)
\(=\left(a+b\right)\left[a\left(b-c\right)+c\left(b-c\right)\right]\)
\(=\left(a+b\right)\left(b-c\right)\left(a+c\right)\)
a) \(\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\)
b) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(=a^3+b^3+3ab\left(a+b\right)+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
c) \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
1) \(3x^2+2x-1\)
\(=3x^2+3x-x-1\)
\(=3x\left(x+1\right)-\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-1\right)\)
2) \(x^3+6x^2+11x+6\)
\(=x^3+x^2+5x^2+5x+6x+6\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+5x+6\right)\)
\(=\left(x+1\right)\left(x+2x+3x+6\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
3) \(x^4+2x^2-3\)
\(=\left(x^2+1\right)^2-4\)
\(=\left(x^2+1-2\right)\left(x^2+1+2\right)\)
\(=\left(x^2-1\right)\left(x^2+3\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)
4) \(ab+ac+b^2+2bc+c^2\)
\(=a\left(b+c\right)+\left(b+c\right)^2\)
\(=\left(b+c\right)\left(a+b+c\right)\)
1, \(3x^2+2x-1\)
\(=3x^2+3x-x-1\)
\(=3x\left(x+1\right)-\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-1\right)\)
2, \(x^3+6x^2+11x+6\)
\(=\left(x^3+3x^2\right)+\left(3x^2+9x\right)+\left(2x+6\right)\)
\(=x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+3x+2\right)\)
\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)
a. \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x+11=t.\)Thay vào ta được :
\(\left(t+1\right)\left(t-1\right)-24\)
\(=t^2-1-24=t^2-25=\left(t+5\right)\left(t-5\right)\)
Thay \(t=x^2+7x+11\)Ta được :
\(\left(x^2+7x+11+5\right)\left(x^2+7x+11-5\right)\)
\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)
a) - Đặt \(A=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
+ Ta có: \(A=\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right).\left(x+4\right)\right]-24\)
\(\Leftrightarrow A=\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)
- Đặt \(a=x^2+7x+10\)
+ Ta lại có: \(A=a.\left(a+2\right)-24\)
\(\Leftrightarrow A=a^2+2a-24\)
\(\Leftrightarrow A=\left(a^2-4a\right)+\left(6a-24\right)\)
\(\Leftrightarrow A=a.\left(a-4\right)+6.\left(a-4\right)\)
\(\Leftrightarrow A=\left(a-4\right).\left(a+6\right)\)
- Thay \(a=x^2+7x+10\)vào phương trình \(A\), ta có:
\(A=\left(x^2+7x+10-4\right).\left(x^2+7x+10+6\right)\)
\(\Leftrightarrow A=\left(x^2+7x+6\right).\left(x^2+7x+16\right)\)
\(\Leftrightarrow A=\left[\left(x^2+x\right)+\left(6x+6\right)\right].\left(x^2+7x+16\right)\)
\(\Leftrightarrow A=\left[x.\left(x+1\right)+6.\left(x+1\right)\right].\left(x^2+7x+16\right)\)
\(\Leftrightarrow A=\left(x+1\right).\left(x+6\right).\left(x^2+7x+16\right)\)
^_^ Chúc bạn hok tốt ^_^ !!#@##
a) Câu hỏi của a - Toán lớp 8 - Học toán với OnlineMath
b) Câu hỏi của c - Toán lớp 8 - Học toán với OnlineMath
a.\(\left(x^2+x\right)^2+3\left(x^2+x\right)+2=\left(x^2+x\right)^2+2\left(x^2+x\right)+\left(x^2+x+2\right)\)
\(=\left(x^2+x\right)\left(x^2+x+2\right)+\left(x^2+x+2\right)=\left(x^2+x+2\right)\left(x^2+x+1\right)\)
b. \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)(1)
Đặt \(t=x^2+3x\)
(1) \(\Leftrightarrow t\left(t+2\right)+1\)
\(=t^2+2t+1=\left(t+1\right)^2\)(2)
Thay \(t=x^2+3x\)vào (2) t/có:
\(\left(t+1\right)^2=\left(x^2+3x+1\right)^2\)
c. dài lắm mình lười làm, bn bấm thử mạng tìm ik nhớ tíck cho mình nha thanks
c) ab(a+b)+bc(b+c)+ac(c+a)+3abc
= ab(a+b)+abc+bc(b+c)+abc+ac(a+c)+abc
=ab(a+b+c)+bc(b+c+a)+ac(a+c+b)
=(a+b+c)(ab+bc+ac)