K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2019

mình làm được mỗi câu c thoii 

\(x^4+4=x^4+4x^2-4x^2+4\)

\(\Leftrightarrow x^4+4x^2+4-4x^2\)

\(\Leftrightarrow\left(x^4+4x^2+4\right)-4x^2\)

\(\Leftrightarrow\left(x^2+2\right)-\left(2x\right)^2\)

\(\Leftrightarrow\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)

bài này mình thêm và bớt 4x2 vào để dễ phân h hơn

21 tháng 2 2019

b/ \(x^5+x+1=\left(x^5-x^4+x^2\right)+\left(x^4-x^3+x\right)+\left(x^3-x^2+1\right)\)

\(=x^2\left(x^3-x^2+1\right)+x\left(x^3-x^2+1\right)+\left(x^3-x^2+1\right)\)

\(=\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)

19 tháng 10 2017

Bài 1:

a) 25x2 - 10xy + y2 = (5x - y)2

b) 81x2 - 64y2 = (9x)2 - (8y)2 = (9x - 8y)(9x + 8y)

c) 8x3 + 36x2y + 54xy2 + 27y3

= 8x3 + 27y3 + 36x2y + 54xy2

= (2x + 3y)(4x2 - 6xy + 9y2) + 18xy(2x + 3y)

= (2x + 3y)(4x2 - 6xy + 18xy + 9y2)

= (2x + 3y)(4x2 + 12xy + 9y2)

= (2x + 3y)(2x + 3y)2 = (2x + 3y)3

c) (a2 + b2 - 5)2 - 4(ab + 2)2 = (a2 + b2 - 5)2 - 22(ab + 2)2

= (a2 + b2 - 5)2 - (2ab + 4)2

= (a2 + b2 - 5 - 2ab - 4)(a2 + b2 - 5 + 2ab + 4)

= (a2 - 2ab + b2 - 9)(a2 + 2ab + b2 - 1)

= \(\left [ (a - b)^{2} - 3^{2} \right ]\)\(\left [ (a + b)^{2} - 1\right ]\)

= (a - b - 3)(a - b + 3)(a + b - 1)(a + b + 1)

pn đăng mỗi lần vài bài thôi chứ đăng nhìn ngán lắm

19 tháng 10 2017

Bài 2:

a) 2x3 + 3x2 + 2x + 3

= 2x3 + 2x + 3x2 + 3

= 2x(x2 + 1) + 3(x2 + 1)

= (x2 + 1)(2x + 3)

b)x3z + x2yz - x2z2 - xyz2

= xz(x2 + xy - xz - yz)

= \(xz\left [ x(x + y) - z(x + y) \right ]\)

= xz(x + y)(x - z)

c) x2y + xy2 - x - y

= xy(x + y) - (x + y)

= (x + y)(xy - 1)

d) 8xy3 - 5xyz - 24y2 + 15z

= 8xy3 - 24y2 - 5xyz + 15z

= 8y2(xy - 3) - 5z(xy - 3)

= (xy - 3)(8y2 - 5z)

e) x3 + y(1 - 3x2) + x(3y2 - 1) - y3

= x3 - y3 + y - 3x2y + 3xy2 - x

= (x - y)(x2 + xy + y2) - 3xy(x - y) - (x - y)

= (x - y)(x2 + xy + y2 - 3xy - 1)

= (x - y)(x2 - 2xy + y2 - 1)

= \((x - y)\left [ (x - y)^{2} - 1 \right ]\)

= (x - y)(x - y - 1)(x - y + 1)

câu f tương tự

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

15 tháng 12 2016

giúp mk vskhocroi

20 tháng 12 2016

bài 1: ... phá hết ra

bài 2

câu a, tách -2x^2 thành -x^2-x^2 rồi tự giải quyết

câu b, thêm bớt 1 để tạo hằng đẳng thức

câu c, đổi z-x thành -x-z

câu d là hằng đẳng thức đó má nội

mình rất muốn làm hết nhưng cái tật lười nó ko cho mình làm, mong bạn thông cảm

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn

13 tháng 6 2015

a) \([(x-y)3 + (y-z)3]+ (z-x)3\)=\(\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)

\(=\left(x-z\right)\left[\left(\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right)\right]\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]=\left(x-z\right)\left[\left(x-2y+z\right)\left(x+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)=\left(x-z\right)\left(x-y\right)\left(z-y\right)3\)

b) \(=y^2\left(x^2y-x^3+z^3-z^2y\right)-z^2x^2\left(z-x\right)=y^2\left[-y\left(z^2-x^2\right)-\left(z^3-x^3\right)\right]-z^2x^2\left(z-x\right)\)

\(=y^2\left(z-x\right)\left(-yz-xy-z^2-zx-x^2\right)-z^2x^2\left(z-x\right)=\left(z-x\right)\left(-y^3z-xy^2-z^2y^2-xyz-x^2y^2-z^2x^2\right)\)

đến đây coi như là thành nhân tử rồi nha. em muốn gọn thì ráng ngồi nghĩ rồi tách nha. chỉ cần nhóm mấy cái có ngoặc giống nhau là đc. k khó đâu. chịu khó nghĩ để rèn luyện nha

c) \(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)

\(\left(9a^3-6a^2\right)+\left(6a^2-4a\right)+\left(-9a+6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)

d) em sửa đề đi. đề sai rồi. đồng nhất hệ số phải có dấu bằng nha.

có gì liên hệ chị. đúng nha ;)

27 tháng 6 2016

batngo

10 tháng 11 2021

x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz

=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz

=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz

=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3

=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]

=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)

=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]

=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]

=(x+y+z)(x-y-z)(z-x-y)