K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

4x(x+y)(x+y+z)(x+z)+y2z2=4(x2+xy+xz)(x2+xy+xz+yz)+y2z2=4(x2+xy+xz)2+4yz(x2+xy+xz)+y2z2=(2(x2+xy+xz)+yz)2=(2x2+2xy+2xz+yz)

7 tháng 10 2017

Mình nghĩ bạn ghi đề sai, đề đúng theo mình là:

\(x^2y^2\left(x-y\right)+y^2z^2\left(y-z\right)+z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(x-y\right)-y^2z^2\text{[}\left(x-y\right)+\left(z-x\right)\text{]}+z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(x-y\right)-y^2z^2\left(x-y\right)-y^2z^2\left(z-x\right)+z^2x^2\left(z-x\right)\)

\(=\left(x-y\right)\left(x^2y^2-y^2z^2\right)+\left(z-x\right)\left(z^2x^2-y^2z^2\right)\)

\(=\left(x-y\right).y^2\left(x+z\right)\left(x-z\right)+\left(z-x\right).z^2\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x-z\text{ }\right)\text{[}y^2.\left(x+z\right)-z^2\left(x+y\right)\text{]}\)

\(=\left(x-y\right)\left(z-x\right)\left(y^2x+y^2z-z^2x-z^2y\right)\)

\(=\left(x-y\right)\left(z-x\right)\text{[}\left(y^2x-z^2x\right)+\left(y^2z-z^2y\right)\text{]}\)

\(=\left(x-y\right)\left(z-x\right)\text{[}x.\left(y-z\right)\left(y+z\right)+yz\left(y-z\right)\text{]}\)

\(=\left(x-y\right)\left(x-z\right)\left(y-z\right)\left(xy+x\text{z}+yz\right)\)

13 tháng 12 2018

\(2xyz+x^2y+xy^2+x^2z+xz^2+y^2z+yz^2\)

\(=x^2\left(y+z\right)+yz\left(y+z\right)+x\left(y^2+z^3\right)+2xyz\)

\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y^2+z^2+2yz\right)\)

\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y+z\right)^2\)

\(=\left(y+z\right)\left(x^2+yz\right)+xy+xz\)

\(=\left(y+z\right)\left[x\left(x+2\right)+y\left(x+2\right)\right]\)

\(=\left(y+z\right)\left(x+y\right)\left(x+2\right)\)

13 tháng 12 2018

\(b,x^2\left(y-z\right)+y^2\left(z-y\right)+z^2\left(x-y\right)\)

\(=x^2\left(y-z\right)+y^2z-y^2x+z^2x-z^2y\)

\(=x^2\left(y-z\right)+yz\left(y-z\right)-x\left(y^2-z^2\right)\)

\(=\left(y-z\right)\left[x^2+yz-x\left(y+z\right)\right]\)

\(=\left(y-z\right)\left[x\left(x-y\right)-z\left(x-y\right)\right]\)

\(=\left(y-z\right)\left[\left(x-z\right)\left(x-y\right)\right]\)

28 tháng 6 2018

1/ 

a, x2+36=12x

<=>x2-12x+36=0 

<=>(x-6)2=0

<=>x-6=0

<=>x=6

b, 5x(x-3)+3-x=0

<=>5x(x-3)-(x-3)=0

<=>(5x-1)(x-3)=0

<=>\(\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}}\)

2/ Sửa đề x2z2 = y2z2

Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2\)

\(=4\left(x^2+xy+xz\right)\left(x^2+xz+xy+yz\right)+y^2z^2\)

Đặt x2+xy+xz=t, ta có 

\(A=4t\left(t+yz\right)+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+y^2z^2\right)^2\ge0\)