Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = xy + y - 2x - 2
= y( x + 1 ) - 2( x + 1 )
= ( x + 1 )( y - 2 )
B = x2 - 3x + xy - 3y
= x( x - 3 ) + y( x - 3 )
= ( x - 3 )( x + y )
C = 3x2 - 3xy - 5x + 5y
= 3x( x - y ) - 5( x - y )
= ( x - y )( 3x - 5 )
D = xy + 1 + x + y
= y( x + 1 ) + ( x + 1 )
= ( x + 1 )( y + 1 )
E = ax - bx + ab - x2
= ( ax - x2 ) + ( ab - bx )
= x( a - x ) + b( a - x )
= ( a - x )( x + b )
F = x2 + ab + ax + bx
= ( ax + x2 ) + ( ab + bx )
= x( a + x ) + b( a + x )
= ( a + x )( x + b )
G = a3 - a2x - ay + xy
= a2( a - x ) - y( a - x )
= ( a - x )( a2 - y )
Bonus : = ( a - x )[ a2 - ( √y )2 ]
= ( a - x )( a - √y )( a + √y )
H = 2xy + 3z + 6y + xz
= ( 6y + 2xy ) + ( 3z + xz )
= 2y( 3 + x ) + z( 3 + x )
= ( 3 + x )( 2y + z )
A = xy + y - 2x - 2 = y(x + 1) - 2(x + 1) = (y - 2)(x + !1
B = x2 - 3x + xy - 3y = x(x - 3) + y(x - 3) = (x + y)(x - 3)
C = 3x2 - 3xy - 5x + 5y = 3x(x - y) - 5(x - y) = (3x - 5)(x - y)
D = xy + 1 + x + y = xy + x + y + 1 = x(y + 1) + (y + 1) = (x + 1)(y + 1)
E = ax - bx + ab - x2 = ax - x2 + ab - bx = a(a - x) - b(a - x) = (a - b)(a - x)
F = x2 + ab + ax + bx = ab + ax + bx + x2 = a(b + x) + x(b + x) = (a + x)(b + x)
G = a3 - a2x - ay + xy = a2(a - x) - y(a - x) = (a2 - y)(a - x)
H = 2xy + 3z + 6y + xz = 2xy + 6y + 3z + xz = 2y(x + 3) + z(x + 3) = (2y + z)(x + 3)
a)x2-xy+x-y
=x(x-y)+(x-y)
=(x+1)(x-y)
b)3x2-3xy-5x+5y
=3x(x-y)-5(x-y)
=(3x-5)(x-y)
a ) \(x^2-xy+x-y\).
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+1\right).\)
b ) \(3x^2-3xy-5x+5y\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
Bài 1 :
a) xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
b) \(x^3-x+3x^2y+3xy^2+y^3-x-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
Đã có kết quả
Bài 1,chữa phần a
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
=[xy(x+y)+xyz]+[yz(y+z)+xyz]+xz(x+z)
=xy(x+y+z)+yz(x+y+z)+xz(x+z)
=y(x+y+z)(x+z)+xz(x+z)
=(x+z)(xy+y2+yz+xz)
=(x+z)(x+y)(y+z)
Chữa phần b
x3-x+3x2y+3xy2+y3-y
=(x+y)(x+y-1)(x+y+1)
Bài2
a3+b3+c3=(a+b)3-3ab(a+b)+c3=-c3-3ab(-c)+c3=3abc
Ai làm đúng như này ớ sẽ k
\(x^2-xy+x-y\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x-1\right)\left(x-y\right)\)
a, \(x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right).\)
\(b,3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
a,\(\frac{1}{5}x^2y\left(15xy^2-5y+3xy\right)=3x^3y^3-x^2y^2+\frac{3}{5}x^3y^2\)
b,\(5x^3-5x=5x\left(x^2-1\right)=5x\left(x-1\right)\left(x+1\right)\)
c, \(3x^2+5y-3xy-5x=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(3x-5\right)\left(x-y\right)\)
1) 1/5x2y( 15xy2 - 5y + 3xy ) = 3x3y3 - x2y2 + 3/5x3y2
2) a) 5x3 - 5x = 5x( x2 - 1 ) = 5x( x2 - 12 ) = 5x( x - 1 )( x + 1 )
b) 3x2 + 5y - 3xy - 5x = ( 3x2 - 3xy ) + ( 5y - 5x )
= 3x( x - y ) + 5( y - x )
= 3x( x - y ) + 5[ -( x - y ) ]
= 3x( x - y ) - 5( x - y )
= ( 3x - 5 )( x - y )
1) \(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
2)\(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(a+5\right)\)
\(a^3-a^2x-ay+xy=a^2\left(a-x\right)-y\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)
a) \(A=5\left(x-y\right)+ax-ay=\left(a+5\right)\left(x-y\right)\)
b) \(B=a\left(x+y\right)-4x-4y=\left(x+y\right)\left(a-4\right)\)
c) \(C=xz+yz-5\left(x+y\right)=\left(x+y\right)\left(z-5\right)\)
d) \(D=a\left(x-y\right)+bx-by=\left(a+b\right)\left(x-y\right)\)
e) \(E=x\left(x+y\right)-5x-5y=\left(x-5\right)\left(x+y\right)\)
f) \(F=x^2-x-y^2-y=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
g) \(G=x^2-xy+x-y=x\left(x-y\right)+x-y=\left(x+1\right)\left(x-y\right)\)
A = 5(x - y) + ax - ay = 5(x - y) + a(x - y) = (a + 5)(x - y)
B = a(x + y) - 4x - 4y = a(x + y) - 4(x + y) = (a - 4)(x + y)
C = xz + yz - 5(x + y) = z(x + y) - 5(x + y) = (z - 5)(x + y)
D = a(x - y) + bx - by = a(x - y) + b(x - y) = (a + b)(x - y)
E = x(x + y) - 5x - 5y = x(x + y) - 5(x + y) = (x - 5)(x + y)
F = x2 - x - y2 - y = (x2 - y2) - (x + y) = (x2 - xy + xy - y2) - (x + y) = [x(x - y) + y(x - y)] - (x + y) = (x - y)(x + y) - (x + y) = (x + y)(x - y - 1)
G = x2 - xy + x - y = x(x - y) + (x - y) = (x + 1)(x - y)
Lời giải:
a. $a^4+a^3+a^2+a=(a^4+a^3)+(a^2+a)$
$=a^3(a+1)+a(a+1)=(a+1)(a^3+a)=a(a+1)(a^2+1)$
b. $3xy^2+5y-3x^2y+(-5x)=(3xy^2-3x^2y)+(5y-5x)$
$=3xy(y-x)+5(y-x)=(y-x)(3xy+5)$
c. $xy-z+y-xz=(xy+y)-(z+xz)=y(x+1)-z(x+1)=(x+1)(y-z)$
d.
$x^2-bx+ax-ab=(a^2+ax)-(bx+ab)=a(a+x)-b(a+x)=(a+x)(a-b)$