Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 - 2xy - 4 + y2
= (x - y)2 - 22
= (x - y - 2)(x - y + 2)
b) x2 + y2 - 1 - 2xy
= (x - y)2 - 12
= (x - y - 1)(x - y + 1)
c) 25 - x2 + 4xy - 4y2
= 52 - (x - 2y)2
= (5 - x + 2y)(5 + x - 2y)
a, x2+2x+1+x+1
=(x2+2x+2)+x
=(x2+2x+12)+x
=(x+1)2+x
=(2x+1)2
=(2x-1).(2x+1 )
c,xy-y-2x-2
=(xy-2x)-(y-2)
=x.(y-2)-(y-2)
=(y-2).x
e,xy+xz+y2+yz
=(xy+y2)+(xz+yz)
=y.(x+y)+z.(x+y)
=(x+y).(y+z)
d,x3+x2+x+1
=(x3+x2)+(x+1)
=x2.(x+1)+(x+1)
=x2.(x+1)
b,y2+xy+x+2y+1
=(y2+2y)+(xy+x+1)
=y.(y+2) + x.(y+2)
=(y+2).(y+x)
a) Ta có : a2x + a2y - 7x - 7y
= a2(x + y) - (7x + 7y)
= a2(x + y) - 7(x + y)
= (x + y)(a2 - 7)
b) Ta có : x3 + y(1 - 3x2) + x(3x2 - 1) - y3
= x3 - y(3x2 - 1) + x(3x2 - 1) - y3
= x3 - y3 + [x(3x2 - 1) - y(3x2 - 1)]
= x3 - y3 - (3x2 - 1)(x - y)
= (x - y)(x2 + xy + y2) - (3x2 - 1)(x - y)
= (x - y)[(x2 + xy + y2) - (3x2 - 1)]
= (x - y)(x2 + xy + y2 - 3x2 + 1)
= (x - y)(-2x2 + xy + y2 + 1)
bài 2:a. \(5x.\left(y^2-2yz+z^2\right)\)
\(=5x.\left(y-z\right)^2\) .......k bít dc chưa
b.\(\left(x^2y-x\right)+\left(xy^2-y\right)\)
\(=x.\left(xy-1\right)+y.\left(xy-1\right)\)
\(=\left(xy-1\right).\left(x+y\right)\)
Phân tích đa thức thành nhân tử:
a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)
b) \(25-x^2+4xy-4y^2=25-\left(x^2-4xy+4y^2\right)=25-\left(x-2y\right)^2\)
\(=\left(5-x+2y\right)\left(5+x-2y\right)\)
Rút gọn biểu thức;
\(A=\left(6x+1\right)^2+\left(3x-1\right)^2-2\left(3x-1\right)\left(6x+1\right)\)
\(=\left[\left(6x+1\right)-\left(3x-1\right)\right]^2=\left(6x+1-3x+1\right)=\left(3x+2\right)^2\)
Tìm a để đa thức.. Bạn chia cột dọ thì da
\(xy+y^2-x-y=\left(xy+y^2\right)-\left(x+y\right)=y\left(x+y\right)-\left(x+y\right)=\left(y-1\right)\left(x+y\right)\)b)\(25-\left(x^2-4xy+4y^2\right)=5^2-\left(x-2y\right)^2=\left(x-2y+5\right)\left(5-x+2y\right)\)
ab(x2+y2)+xy(a2+b2)
\(=abx^2+aby^2+a^2xy+b^2xy=\left(abx^2+a^2xy\right)+\left(aby^2+b^2xy\right).\)
\(=ax\left(bx+ay\right)+by\left(ay+bx\right)=\left(ax+by\right).\left(ay+bx\right)\)
b,\(^{x^6-x^4+4x^3+2x^2}\)
\(x^6+4x^3+4-x^4+2x^2-4\)
\(\left(x^3+2\right)^2-\left(x^2-2\right)^2\)
\(\left(x^3-x^2+4\right)\cdot\left(x^3+x^2\right)\)
c \(a^2\cdot\left(x+y\right)+b^2\cdot\left(x+y\right)-2ab\cdot\left(x+y\right)\)
\(\left(x+y\right)\cdot\left(a^2+b^2-2ab\right)\)
\(\left(x+y\right)\cdot\left(a-b\right)^2\)
xin lỗi vì ko có thời gian nên phần d bn tự làm nha