K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

Ta có: 

\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\)

\(=\sqrt{\left(3x^2+6x+3\right)+9}+\sqrt{\left(5x^4-10x^2+5\right)+4}\)

\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\left(1\right)\)

Ta lại có:

\(-2x^2-4x+3=-2\left(x+1\right)^2+5\le5\left(2\right)\)

Từ (1) và (2) dấu = xảy ra khi \(x=-1\)

8 tháng 9 2016

Ta có \(4x-5\sqrt{x}-3\) = (\(4x-\frac{2×2×5\sqrt{x}}{2×2}+\frac{25}{16}\)) - \(\frac{73}{16}\)

= (\(2\sqrt{x}-\frac{5}{4}\))2 - \(\frac{73}{16}\)

= (\(2\sqrt{x}-\frac{5}{4}-\frac{\sqrt{73}}{4}\))(\(2\sqrt{x}-\frac{5}{4}+\frac{\sqrt{73}}{4}\))

8 tháng 9 2016

Câu còn lại làm tương tự

30 tháng 1 2019

Sửa lại đề là tìm Max nhé m.n

Ta có:

\(\frac{ab+bc+ca+6\left(a+b+c\right)+27}{\left(a+3\right)\left(b+3\right)\left(c+3\right)}=\frac{3}{5}\)

\(\Leftrightarrow\frac{\left(b+3\right)\left(c+3\right)+\left(c+3\right)\left(a+3\right)+\left(a+3\right)\left(b+3\right)}{\left(a+3\right)\left(b+3\right)\left(c+3\right)}=\frac{3}{5}\)

\(\Leftrightarrow\frac{5}{a+3}+\frac{5}{b+3}+\frac{5}{c+3}=3\Leftrightarrow\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}=0\)

Xét biểu thức:

\(\frac{a^2-4}{a^2-9}=\frac{\left(a-2\right)\left(a+2\right)}{\left(a-3\right)\left(a+3\right)}=\frac{a-2}{a+3}.\frac{a+2}{a-3}\)

tưởng tự:

\(\frac{b^2-4}{b^2-9}=\frac{b-2}{b+3}.\frac{b+2}{b-3},\frac{c^2-4}{c^2-9}=\frac{c-2}{c+3}.\frac{c+2}{c-3}\)

\(\Rightarrow\frac{a^2-4}{a^2-9}+\frac{b^2-4}{b^2-9}+\frac{c^2-4}{c^2-9}=\frac{a-2}{a+3}.\frac{a+2}{a-3}+\frac{b-2}{b+3}.\frac{b+2}{b-3}+\frac{c-2}{c+3}.\frac{c+2}{c-3}\)

Do vai trò của a và b và c như nhau nên ta giả sử

\(a\ge b\ge c\)

Khi đó ta có:

\(\frac{a-2}{a+3}\ge\frac{b-2}{b+3}\ge\frac{c-2}{c+3},\frac{a+2}{a-3}\le\frac{b+2}{b-3}\le\frac{c+2}{c-3}\)

Áp dụng bất đẳng thức chebyshev cho 2 bộ ngược chiều trên ta có
\(\frac{a-2}{a+3}.\frac{a+3}{a-2}+\frac{b-2}{b+3}.\frac{b+2}{b-3}+\frac{c-2}{c+3}.\frac{c+2}{c-3}\le\left(\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}\right).\left(\frac{a+2}{a-3}+\frac{b+2}{b-3}+\frac{c+2}{c-3}\right)\)

Mà \(\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}=0\)

\(\Rightarrow\frac{a^2-4}{a^2-9}+\frac{b^2-4}{b^2-9}+\frac{c^2-4}{c^2-9}\le0\)

\(\Rightarrow\frac{5}{a^2-9}+\frac{5}{b^2-9}+\frac{5}{c^2-9}\le-3\Rightarrow\frac{1}{a^2-9}+\frac{1}{b^2-9}+\frac{1}{c^2-9}\le\frac{-3}{5}\)

Dấu bằng xảy ra khi a=b=c=2

30 tháng 1 2019

Tìm max nha mấy god, e bị nhầm sory

12 tháng 12 2017

Đánh dấu số h/s đó lần lượt là: a1,a2,....a9

Giả sử: a5 là học sinh lớp B

=>a4,a6 không thể cùng là học sinh lớp B

Th1:a4,a6 cùng thuộc lớp A khi đó a2,a6 cách đều a4.

a4,a8 cách đều a6 và a8 thuộc lớp B nên hiển nhiên a5 sẽ cách đều a2 và a8 (trái với giả thuyết)

Th2:a4 ,a6 cùng thuộc một lớp khác nhau.

Kmttq giả sử: a4 lớp A,a6 lớp B

Do a4 cách đều a3,a5 nên a4 thuộc lớp B. Do a6 cách đều a3 và a9 nên a9 thuộc lớp A.a5 cách đều a1 và a9 nên a1 thuộc lớp B....

tương tự như vậy hiển nhiên có:a7 đứng cách đều hai bạn cùng lớp A là a5,a9.(trái với giả thuyết)

Vậy có ít nhất một học sinh đứng cách hai bạn cùng lớp với mình một khoảng cách như nhau (đpcm)

12 tháng 12 2017

Mk hỏi là giải theo nguyên lí Dirichlet đc k

28 tháng 2 2022

bon gà

 

21 tháng 6 2016

4x^2 - 7x -2 = 4x^2 - 8x + x - 2 = 4x(x - 2) + (x - 2) = (x -2)(4x + 1)

21 tháng 6 2016

\(4x^2-7x-2=4x^2-8x+x-2=4x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(4x+1\right)\)

18 tháng 8 2018

\(VT=\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}\)

\(=\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}\)

\(\ge\sqrt{1}+\sqrt{4}+\sqrt{5}=3+\sqrt{5}>\sqrt{5}=VP\)

Vậy pt vô nghiệm

6 tháng 2 2017

ab+bc+ca=3ac hay ab+bc+ca=3abc

7 tháng 2 2017

Cứ phải cảnh giác bạn à:

không biết hay vô tình hay hưu ý nữa nhưng các câu hỏi sai xuất hiện rất nhiều

khi hỏi lại, không thấy phải hồi. hay là người hỏi cũng chưa hiểu câu hỏi