Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-x^2-x+1\)
\(=x^2\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-1\right)\)
a) 3x2 - 7x + 4
= 3x2 - 3x - 4x + 4
= 3x( x - 1 ) - 4( x - 1 )
= ( x - 1 )( 3x - 4 )
b) x2 - 6xy + 9y2 = ( x - 3y )2
c) x2 - 8x - 9
= x2 - 9x + x - 9
= x( x - 9 ) + ( x - 9 )
= ( x - 9 )( x + 1 )
a) 3x2 - 7x + 4
= 3x2 - 4x - 3x + 4
= (3x2 - 4x) - (3x - 4)
= x.(3x - 4) - (3x - 4)
= (3x - 4).(x - 1)
b) x2 - 6xy + 9y2
= x2 - 2.x.3y + (3y)2
= (x - 3y)2
c) x2 - 8x - 9
= x2 - 9x + x - 9
= (x2 - 9x) + (x - 9)
= x.(x - 9) + (x - 9)
= (x - 9).(x + 1)
x^2+6xy+9y^2-3x-9y+2
=( x^2+6xy+9y^2)-3(x+3y)+9/4 -1/4
=(x+3y)^2-3(x+3y)+(3/2)^2- 1/4
=(x+3y+3/2)^2-(1/2)^2
=(x+3y+3/2+1/2)(x+3y+3/2-1/2)=(x+3y+2)(x+3y+1)
a) A = (x + 1)(y - 2) - (2 - y)2
= -[(x + 1)(2 - y) + (2 - y)2]
= -[(x + 1 - 2 + y)(2 - y)]
= -[(x - 1 + y)(2 - y)]
= (x - 1 + y)(y - 2)
Bài 2:
a) \(A=\left(x+1\right)\left(y-2\right)-\left(2-y\right)^2\)
\(A=\left(x+1\right)\left(y-2\right)-\left(y-2\right)^2\)
\(A=\left(y-2\right)\left(x+1-y+2\right)\)
\(A=\left(y-2\right)\left(x-y+3\right)\)
b) \(B=x^2-6xy+9y^2+4x-12y\)
\(B=\left[x^2-2\cdot x\cdot3y+\left(3y\right)^2\right]+4\left(x-3y\right)\)
\(B=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(B=\left(x-3y\right)\left(x-3y+4\right)\)
Bài 3:
a) \(3\left(x-2\right)\left(x+3\right)-x\left(3x+1\right)=2\)
\(\left(3x^2+3x-18\right)-\left(3x^2+x\right)-2=0\)
\(3x^2+3x-18-3x^2-x-2=0\)
\(2x-20=0\)
\(x=10\)
b) \(6x^2+13x+5=0\)
\(6x^2+10x+3x+5=0\)
\(2x\left(3x+5\right)+\left(3x+5\right)=0\)
\(\left(3x+5\right)\left(2x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+5=0\\2x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-5}{3}\\x=\frac{-1}{2}\end{cases}}}\)
a) \(x^2-81=\left(x-9\right)\left(x+9\right)\)
b) \(4x^2-25=\left(2x-5\right)\left(2x+5\right)\)
c) \(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
d) \(x^2+6xy+9y^2=\left(x+3y\right)^2\)
e) \(6x-9-x^2=-\left(x^2-6x+9\right)=-\left(x-3\right)^2\)
f) \(x^2-4x^2+4y^2+4xy=\left(x^2+4xy+4y^2\right)-4x^2=\left(x+2y\right)^2-4x^2\\ =\left(x+2y+2x\right)\left(x+2y-2x\right)=\left(3x+2y\right)\left(2y-x\right)\)
g) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)=2a\left(a^2+3b^2\right)\)
h) \(\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\\ =\left(4x+2\right)\cdot2x=4x\left(2x+1\right)\)
a) \(3xy-6xy^2=3xy\left(1-2y\right)\)
b) \(3x^3+6x^2+3x=3x\left(x^2+2x+1\right)=3x\left(x+1\right)^2\)
c) \(x^3-x^2+2\)
d) \(x^2+4x+4-y^2=\left(x^2+4x+4\right)-y^2=\left(x+2\right)^2-y^2=\left(x-y+2\right)\left(x+y+2\right)\)
e) \(x^3+4x^2+4x=x\left(x^2+4x+4\right)=x\left(x+2\right)^2\)
f) \(x^2+2x+1-9y^2=\left(x+1\right)^2-\left(3y\right)^2=\left(x-3y+1\right)\left(x+3y+1\right)\)
g) \(6x^2-12x=6x\left(x-2\right)\)
h) \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)
i) \(x^2-2xy+y^2-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)
\(a.=x^3+3x^2y+3x^2y+9xy^2+3xy^2+9y^3\)
\(=x^2\left(x+3y\right)+3xy\left(x+3y\right)+3y^2\left(x+3y\right)\)
\(=\left(x+3y\right)\left(x^2+3xy+3y^2\right).\)
\(b.=9x^3+3x^2y+9x^2y+3xy^2+3xy^2+y^3\)
\(=3x^2\left(3x+y\right)+3xy\left(3x+y\right)+y^2\left(3x+y\right)\)
\(=\left(3x^2+3xy+y^2\right)\left(3x+y\right)\).
\(a,3x^3-6x^2+3x\)
\(=3x\left(x^2-2x+1\right)\)
\(=3x\left(x-1\right)^2\)
\(b,16x^2y-4xy^2-4x^3\)
\(=-4x\left(x^2-4xy+4y^2-3y^2\right)\)
\(=-4x\left(x-2y+y\sqrt{3}\right)\left(x-2y-y\sqrt{3}\right)\)
\(x^4+6x^3+13x^2+12x+4\)
\(=x^4+x^3+5x^3+5x^2+8x^2+8x+4x+4\)
\(=x^3\left(x+1\right)+5x^2\left(x+1\right)+8x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+5x^2+8x+4\right)\)
\(=\left(x+1\right)\left(x^3+x^2+4x^2+4x+4x+4\right)\)
\(=\left(x+1\right)\left[x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\right]\)
\(=\left(x+1\right)^2\left(x+2\right)^2\)