Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, x^2 + 5x +4
= x^2 + 1x + 4x + 4
= (x^2 + 1x) + (4x + 4)
= x ( x + 1 ) + 4 ( x + 1 )
= (x + 1) (x + 4)
b, x^2 - 6x + 5
= x^2 - 1x - 5x + 5
= (x^2 - 1x) - (5x - 5)
= x (x - 1) - 5 (x - 1)
= (x - 1) (x - 5)
c, x^2 + 7x + 12
= x^2 + 3x + 4x + 12
= (x^2 + 3x) + (4x + 12)
= x (x + 3) + 4 (x + 3)
= (x + 3) (x + 4)
d, 2x^2 - 5x + 3
= 2^x2 - 2x - 3x + 3
= 2x (x - 1) - 3 (x - 1)
= (x-1) (2x - 3)
e, 7x - 3x^2 - 4
= 3x + 4x - 3x^2 - 4
= (3x - 3x^2) + (4x - 4)
= 3x (1 - x) + 4 (x - 1)
= 3x (1-x) - 4 (1 - x)
= (1 - x) (3x - 4)
f, x^2 - 10x + 16
= x^2 - 2x - 8x + 16
= (x^2 - 2x) - (8x - 16)
= x (x - 2) - 8 (x - 2)
= (x - 2) (x - 8)
a, (x+1)(x+4)
b,(x-5)(x-1)
c,(x+3)(x+4)
d,(2x-3)(x-1)
e,(-3x+4)(x-1)
f, (x-8)(x-2)
b) 3x4-3x3+9x3-9x2-24x2+24x-48x+48
=3x3(x-1)+9x2(x-1)-24x(x-1)-48(x-1)
=(x-1)(3x3+9x2-24x-48)
=3(x-1)(x3+3x2-8x-16)
a) \(x^2+5x-6=x^2-x+6x-6=x.\left(x-1\right)+6.\left(x-1\right)=\left(x+6\right)\left(x-1\right)\)
b) \(7x-6x^2-2=3x-6x^2-2+4x=3x.\left(1-2x\right)-2.\left(1-2x\right)=\left(1-2x\right)\left(3x-2\right)\)
c)\(x^2+4x+3=x^2+x+3x+3=x.\left(x+1\right)+3.\left(x+1\right)=\left(x+3\right)\left(x+1\right)\)
d) \(2x^2+5x-3=2x^2-x+6x-3=x.\left(2x-1\right)+3.\left(2x-1\right)=\left(x+3\right)\left(2x-1\right)\)
a) x3 - 7x + 6
= x3 - 2x2 + 2x2 - 4x - 3x + 6
= x2 ( x - 2 ) + 2x ( x - 2 ) - 3 ( x - 2 )
= ( x - 2 ) ( x2 + 2x - 3 )
= ( x - 2 ) ( x2 - x + 3x - 3 )
= ( x - 2 ) [ x ( x - 1 ) + 3 ( x - 1 ) ]
= ( x - 2 ) ( x - 1 ) ( x + 3 )
b ) x3 - 9x2 + 6x + 16
= x3 - 8x2 - x2 + 8x - 2x + 16
= x2 ( x - 8 ) - x ( x - 8 ) - 2 ( x - 8 )
= ( x - 8 ) ( x2 - x - 2 )
= ( x - 8 ) ( x2 + x - 2x - 2 )
= ( x - 8 ) [ x ( x + 1 ) - 2 ( x + 1 ) ]
= ( x - 8 ) ( x + 1 ) ( x - 2 )
c ) x3 - 6x2 - x + 30
= x3 - 5x2 - x2 + 5x - 6x + 30
= x2 ( x - 5 ) - x ( x - 5 ) - 6 ( x - 5 )
= ( x - 5 ) ( x2 - x - 6 )
= ( x - 5 ) ( x2 - 3x + 2x - 6 )
= ( x - 5 ) [ x ( x - 3 ) + 2 ( x - 3 ) ]
= ( x - 5 ) ( x - 3 ) ( x + 2 )
d ) 2x3 - x2 + 5x + 3
= 2x3 + x2 - 2x2 - x + 6x + 3
= x2 ( 2x + 1 ) - x ( 2x + 1 ) + 3 ( 2x + 1 )
= ( 2x + 1 ) ( x2 - x + 3 )
a)x^2-(a+b)x+ab
= x^2 - ax - bx + ab
= (x^2 - ax) - (bx - ab)
= x(x-a) - b(x-a)
= (x-b)(x-a)
b)7x^3-3xyz-21x^2+9z
=
c)4x+4y-x^2(x+y)
= 4(x + y) - x^2(x+y)
= (4-x^2) (x+y)
= (2-x)(2+x)(x+y)
d) y^2+y-x^2+x
= (y^2 - x^2) + (x+y)
= (y-x)(y+x)+ (x+y)
= (y-x+1) (x+y)
e)4x^2-2x-y^2-y
= [(2x)^2 - y^2] - (2x +y)
= (2x-y)(2x+y) - (2x+y)
= (2x -y -1)(2x+y)
f)9x^2-25y^2-6x+10y
=
\(a,=5x^2-5x+3x-3=\left(x-1\right)\left(5x+3\right)\\ b,=2x^2-5x+2x-5=\left(2x-5\right)\left(x+1\right)\\ c,=x^2+5x-3x-15=\left(x+5\right)\left(x-3\right)\\ d,=7x^2-7x+x-1=\left(x-1\right)\left(7x+1\right)\)
a)\(x^2+10x+25-y^2\)
\(=\left(x+5\right)^2-y^2\)
\(=\left(x+5+y\right)\left(x+5-y\right)\)
b)\(5x^3-7x^2+10x-14\)
\(=x^2\left(5x-7\right)+2\left(5x-7\right)\)
\(=\left(x^2+2\right)\left(5x-7\right)\)
c)\(-5y^2+30y-45\)
\(=-5\left(y^2-6y+9\right)\)
\(=-5\left(y-3\right)^2\)
e)\(4xy^2-8xyz+4xz^2\)
\(=4x\left(y^2-2yz+z^2\right)\)
\(=4x\left(y-z\right)^2\)
f)\(x^2+7x+10\)
\(=x^2+5x+2x+10\)
\(=x\left(x+5\right)+2\left(x+5\right)\)
\(=\left(x+2\right)\left(x+5\right)\)
k)\(2x^7+6x^6+6x^5-2x^4\)
\(=2x^4\left(x^3+3x^2+3x-1\right)\)
a)\(x^2+10x+25-y^2\)
\(=\left(x+5\right)^2-y^2\)
\(=\left(x+5-y\right)\left(x+5+y\right)\)
b)\(5x^3-7x^2+10x-14\)
\(=x^2\left(5x-7\right)+2\left(5x-7\right)\)
\(=\left(5x-7\right)\left(x^2+2\right)\)
c)\(-5y^2+30y-45\)
\(=-5\left(y^2-6y+9\right)\)
\(=-5\left(y-3\right)^2\)
e)\(4xy^2-8xyz+4xz^2\)
\(=4x\left(y^2-2yz+z^2\right)\)
\(=4x\left(y-z\right)^2\)
f)\(x^2+7x+10\)
\(=x^2+5x+2x+10\)
\(=x\left(x+5\right)+2\left(x+5\right)\)
k)\(2x^7+6x^6+6x^5-2x^4\)
\(=2x^4\left(x^3+3x^2+3x-1\right)\)
\(=\left(x+2\right)\left(x+5\right)\)
6x3 + 5x2 - 7x - 4
= (6x3 + 5x - 7x) - 4
= x (6x2 - 5 - 7) - 22
= x (6x2 - 12) - 22
= x [6 (x2 - 2)] - 22
= x [6 (x2 - \(\sqrt{2}^2\))] - 22
= x [6 (x +\(\sqrt{2}\)) (x -\(\sqrt{2}\))] - 22
= (x - 22) [6 (x +\(\sqrt{2}\)) (x -\(\sqrt{2}\))
b) 2x3 - x2 + x - 2
= (2x3 - x2 - x) - 2
= x (2x2 - x - 1) - 2
= (x - 2) (2x2 - x - 1)
(mik ko biet dug ko, neu sai mog bn thog cam)