Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 - y2 + 4x + 4
= ( x2 + 4x + 4 ) - y2
= ( x + 2 )2 - y2
= ( x + 2 - y )( x + 2 + y )
b) x2 - 2xy + y2 - 1
= ( x2 - 2xy + y2 ) - 1
= ( x - y )2 - 12
= ( x - y - 1 )( x - y + 1 )
c) x2 - 2xy + y2 - 4
= ( x2 - 2xy + y2 ) - 4
= ( x - y )2 - 22
= ( x - y - 2 )( x - y + 2 )
d) x2 - 2xy + y2 - z2
= ( x2 - 2xy + y2 ) - z2
= ( x - y )2 - z2
= ( x - y - z )( x - y + z )
e) 25 - x2 + 4xy - 4y2
= 25 - ( x2 - 4xy + 4y2 )
= 52 - ( x - 2y )2
= ( 5 - x + 2y )( 5 + x - 2y )
f) x2 + y2 - 2xy - 4z2
= ( x2 - 2xy + y2 ) - 4z2
= ( x - y )2 - ( 2z )2
= ( x - y - 2z )( x - y + 2z )
4x2 -6x= 2x(2x-3)
b) 3x3 -6x2y -24xy + 12x2 = \(3x\left(x^2-2xy-8y+4x\right)\)
c) x2 -25 + y2 + 2xy\(=x^2+2xy+y^2-25\)\(=\left(x+y\right)^2-5^2\)
=>\(\left(x+y+5\right)\left(x+y-5\right)\)
A = x2(x - 1) + 6(1 - x)
A = x3 - x2 + 6 - 6x
A = (x3 - 6x) - (x2 - 6)
A = x.(x2 - 6) - (x2 - 6)
A = (x - 1)(x2 - 6)
C = x2 + 2xy + y2 - yz - xz
C = (x + y)2 - z.(x + y)
C = (x + y - z).(x + y)
a) \(3x^4-48=3\left(x^4-16\right)=3\left(x^2-4\right)\left(x^2+4\right)=3\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\)
b) \(x^4-x^3+x^2-1=x^3.\left(x-1\right)+\left(x+1\right).\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+x+1\right)\)
c) \(4x-4y+x^2-2xy+y^2=4\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x-y\right)\left(x-y+4\right)\)
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccxccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc.
a) x^4 - x^3 - x + 1
= x^3 ( x - 1 ) - ( x- 1 )
= ( x^3 - 1 )(x - 1)
= ( x- 1 )^2 (x^2 + x + 1 )
a)x4-x3-x+1
=x3(x-1)-(x-1)
=(x-1)(x3-1)
=(x-1)(x-1)(x2+x+1)
=(x-1)2(x2+x+1)
b)5x2-4x+20xy-8y
(sai đề)
a) \(x^2+2x-4y^2-4y=\left(x^2-4y^2\right)+\left(2x-4y\right)=\left(x+2y\right)\left(x-2y\right)+2\left(x-2y\right)\)
\(=\left(x-2y\right).\left(x+2y+2\right)\)
b) \(x^4-6x^3+54x-81=\left(x^4-81\right)-\left(6x^3-54x\right)=\left(x^2-9\right)\left(x^2+9\right)-6x.\left(x^2-9\right)\)
\(=\left(x^2-9\right).\left(x^2+9-6x\right)=\left(x+3\right).\left(x-3\right).\left(x-3\right)^2=\left(x+3\right).\left(x-3\right)^3\)
c) \(ax^2+ax-bx^2-bx-a+b=\left(ax^2-bx^2\right)+\left(ax-bx\right)-\left(a-b\right)\)
\(=x^2.\left(a-b\right)+x.\left(a-b\right)-\left(a-b\right)=\left(a-b\right).\left(x^2+x-1\right)\)
d) \(\left(x^2+y^2-2\right)^2-\left(2xy-2\right)^2=\left(x^2+y^2-2+2xy-2\right).\left(x^2+y^2-2-2xy+2\right)\)
\(=\left(x^2+2xy+y^2-4\right).\left(x^2+y^2-2xy\right)=\left[\left(x+y\right)^2-4\right].\left(x-y\right)^2\)
\(=\left(x+y+2\right).\left(x+y-2\right).\left(x-y\right)^2\)
1) =(x+2)(x-2)+(x-2)2=(x-2)(x+2+x-2)=2x(x+2)
2)=x(x2-6x+9)=x(x-3)2
3)xem lại đề giúp mik
4)=x4+4x2-4x2+4=(x4+4x2+4)-4x2=(x2+2)2-4x2=(x2+2x+2)(x2-2x+2)
\(x^2-4+\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2+x-2\right)\)
\(=2x\left(x-2\right)\)
\(a.=-4\left(x^2-2x+1\right)\)
\(=-4\left(x-1\right)^2\)
\(b.=3x\left(x-2\right)+2y\left(x-2\right)\)
\(=\left(3x+2y\right)\left(x-2\right)\)
2xy - x2 - y2 + 36=-(x2-2xy+y2-36)=-(x-y)2-36=-(x-y-6)(x-y+6)