Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(3x^3-4x^2+5x-4\)
\(=3x^3-3x^2-x^2+x+4x-4\)
\(=3x^2\left(x-1\right)-x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(3x^2-x+4\right)\left(x-1\right)\)
b, \(4x^3-3x^2+5x-21\)
\(=4x^3-7x^2+4x^2-7x+12x-21\)
\(=x^2\left(4x-7\right)+x\left(4x-7\right)+3\left(4x-7\right)\)
\(=\left(x^2+x+3\right)\left(4x-7\right)\)
c, \(3x^3+8x^2+14x+15\)
\(=3x^3+5x^2+3x^2+5x+9x+15\)
\(=x^2\left(3x+5\right)+x\left(3x+5\right)+3\left(3x+5\right)\)
\(=\left(x^2+x+3\right)\left(3x+5\right)\)
Bài này dùng phương pháp nhẩm nghiệm (tối ưu nhất với đa thức bậc ba)
Chúc bạn học tốt.
\(x^2+2xy+7x+7y+y^2+10\)
\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+\frac{49}{4}-\frac{9}{4}\)
\(=\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}-\frac{9}{4}\)
\(=\left(x+y+\frac{7}{2}\right)^2-\frac{9}{4}\)
\(=\left(x+y+\frac{7}{2}-\frac{3}{2}\right)\left(x+y+\frac{7}{2}+\frac{3}{2}\right)\)
\(=\left(x+y+2\right)\left(x+y+5\right)\)
b)Ta có: x2y+xy2+x+y=2010
<=>xy.x+xy.y+x+y=2010
<=>11x+11y+x+y=2010
<=>12(x+y)=2010
<=>x+y=167,5
=>(x+y)2=28056,25
<=>x2+y2+2xy=28056,25
<=>x2+y2=28034,25
Bài 1:
a) 3x2 - 3y2
= 3(x2 - y2)
= 3(x - y)(x + y)
b) x2 - xy + 7x - 7y
= x(x - y) + 7(x - y)
= (x - y)(x + 7)
c) x2 - 3x + 2
= x2 - x - 2x + 2
= x(x - 1) - 2(x - 1)
= (x - 1)(x - 2)
Trần Hoàng NghĩaSiêu sao bóng đáRibi Nkok NgokNguyễn Thanh HằngVũ ElsaNguyễn Ngô Minh TríAkai Harumalê thị hương giangPhạm Hoàng Giang với các bạn khác giải hộ mình nhé! Vô trang cá nhân giải hộ mình mấy bài khác nữa.
\(a,\)\(x^3-13x-12\)
\(=x^3-x-12x-12\)
\(=x\left(x^2-1\right)-12\left(x+1\right)\)
\(=x\left(x-1\right)\left(x+1\right)-12\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-12\right)\)
\(=\left(x+1\right)\left(x^2-4x+3x-12\right)\)
\(=\left(x+1\right)\left[x\left(x-4\right)+3\left(x+4\right)\right]\)
\(=\left(x+1\right)\left(x-4\right)\left(x+3\right)\)
a) \(x^3-13x-12\)
\(=x^3+x^2-x^2-x-12x-12\)
\(=x^2\left(x+1\right)-x\left(x+1\right)-12\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-12\right)\)
\(=\left(x+1\right)\left(x^2-4x+3x-12\right)\)
\(=\left(x+1\right)\left[x\left(x-4\right)+3\left(x-4\right)\right]\)
\(=\left(x+1\right)\left(x-4\right)\left(x+3\right)\)
b) \(2x^4+3x^3-9x^2-3x+2\)câu này hình như sai đề rồi, bạn xem lại nhen
c) \(x^4-3x^3-6x^2+3x+1\)câu này cx thế, bạn xem lại nha
/ (4x−2)(10x+4)(5x+7)(2x+1)+17=0(4x−2)(10x+4)(5x+7)(2x+1)+17=0
⇔(4x−2)(5x+7)(10x+4)(2x+1)+17=0⇔(4x−2)(5x+7)(10x+4)(2x+1)+17=0
⇔(20x2+18x−14)(20x2+18x+4)+17=0⇔(20x2+18x−14)(20x2+18x+4)+17=0
Đặt t= 20x2+18x+4(t≥0)20x2+18x+4(t≥0) ta có:
(t-18).t +17=0
⇔t2−18t+17=0⇔t2−18t+17=0
⇔(t−17)(t−1)=0⇔(t−17)(t−1)=0
⇔[t=17(tm)t=1(tm)⇔[t=17(tm)t=1(tm) ⇔[20x2+18x+4=1720x2+18x+4=1⇔[20x2+18x−13=020x2+18+3=0⇔[20x2+18x+4=1720x2+18x+4=1⇔[20x2+18x−13=020x2+18+3=0
⇔[(20x+9−341−−−√)(20x+9+341−−−√)=0(20x+9−21−−√)(20x+9+21−−√)=0⇔[(20x+9−341)(20x+9+341)=0(20x+9−21)(20x+9+21)=0
⇔⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢x=−9+341−−−√20x=−9−341−−−√20x=−9+21−−√20x=−9−21−−√20
\(a,\)\(\left(4x-2\right)\left(10x+4\right)\left(5x+7\right)\left(2x+1\right)+17\)
\(=\left(4x-2\right)\left(5x+7\right)\left(10x+4\right)\left(2x+1\right)+17\)
\(=\left(20x^2+18x-5\right)\left(20x^2+18x+4\right)+17\)
Đặt ....
a,(x-y)^2-2(x+y)+1 b, x^2-y^2+4x+4 c, 4x^2-y^2+8(y-2)
=(x-y-1)^2 =(x^2+4x+4)-y^2 =4x^2-y^2+8y-16
=(x+2)^2-y^2 =4x^2-(y^2-8y+16)
=(x+2-y)(x+2+y) =4x^2-(y-4)^2
a) (x+y)2-2(x+y)+1=(x+y-1)2
b) x2-y2+4x+4 = (x2+4x+4)-y2=(x+2)2-y2=(x+y+2)(x-y+2)
c)4x2-y2+8(y-2) = 4x2-(y2-8y+16) = (2x)2-(y-4)2=(2x+y-4)(2x-y+4)
d)x3-2x2+2x-4 = x2(x-2)+2(x-2) = (x-2)(x2+2)
e)xy-4+2x-2y=x(y+2) - 2(y+2) = (x-2)(y+2)
\(\text{a) }x^4+64\)
\(=x^4+16x^2+64-16x^2\)
\(=\left(x^4+16x^2+64\right)-16x^2\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2+4x+8\right)\left(x^2-4x+8\right)\)
\(\text{b) }4x^4+81y^4\)
\(=4x^4+36x^2y^2+81y^4-36x^2y^2\)
\(=\left(4y^4+36x^2y^2+81y^4\right)-36x^2y^2\)
\(=\left(2x^2+9y^2\right)^2-\left(6xy\right)^2\)
\(=\left(2x^2+9y^2+6xy\right)\left(2x^2+9y^2-6xy\right)\)
a. x4 + 64
= (x2)2 + 2x28 + 82 - 2x28
= (x2 + 8)2 - (4x)2
= (x2 + 8 + 4x)(x2 + 8 - 4x)
b. 4x4 + 81y4
= (2x2)2 + (9y2)2
Làm tới đây bí rồi bạn! Mà hình như làm gì có công thức a2 + b2