Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
a, 4x2 - 12x + 9
= (2x + 3)2
b, 9x4y3 + 3x2y4
= 3x2y3(3x2 + y)
c, ( x - 3 )2 - 2x ( x - 3 )
= (x - 3)(x - 3 - 2x)
= (x - 3)(-x - 3)
d, 3x ( x - 1 ) + 6 ( x - 1 )
= 3(x - 1)(x + 2)
e, 2x ( x + 1 ) - 4x - 4
= 2x(x + 1) - 4(x + 1)
= (x + 1)(2x - 4)
= 2(x + 1)(x - 2)
f, ( 2x - 3 )2 - 4x + 6
= (2x - 3)2 - 2(2x - 3)
= (2x - 3)(2x - 3 - 2)
= (2x - 3)(2x - 5)
a)x4-4(x2+5)-25=x4-4x2-45=(x4-9x2)+(5x2-45)=x2(x2-9)+5(x2-9)=(x2-9)(x2+5)=(x-3)(x+3)(x2+5)
b)a2-b2-2a+1=(a2-2a+1)-b2=(a-1)2-b2=(a-b-1)(a+b-1)
c)x2-2x-4y2-4y=(x2-2x+1)-(4y2+4y+1)=(x-1)2-(2y+1)2=(x-1-2y-1)(x-1+2y+1)=(x-2y-2)(x+2y)
d)x2+4x-y2+4=(x2+4x+4)-y2=(x+2)2-y2=(x-y+2)(x+y+2)
(X-y-4)2-(2x+3y-1)2
=(X-Y-4-2X-3Y+1)(X-Y-4+2X+3Y-1)=(-X-4Y-3)(X+2Y-5)
(2x2+1)2+6(2x2+1)+9
=(2X2+1+3)2 (dùng hằng đẳng thức a2 +2ab+b2 =(a+b)2
=(2x2+4)2=(2(x2+2))2=4(x2+2)2
\(a,\left(x-y-4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(3x-2y-5\right)\left(-x-4y-3\right)\)
\(b,\left(2x^2+1\right)^2+6\left(2x^2+1\right)+9\)
\(=\left(2x^2+4\right)^2\)
Đây là cách hiện đại :
\(x^4-2x^3+2x-1\)
\(=\left(x^4-1\right)-\left(2x^3-2x\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(\left(x^2+1\right)-2x\right)\)
\(=\left(x+1\right)\left(x-1\right)\left(\left(x^2+1\right)-2x\right)\)
a,=\(x^4-x^3-x^3+x^2-x^2+x+x-1\)
cu hai so nhom 1 nhom roi dat thua so chung la xong
b,x^4+x^3+x^3+x^2+x^2+x+x+1
cu hai so lai nhom 1 nhom va dat thua so chung
a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right).\left(x+2y\right)-2.\left(x+2y\right)\)
\(=\left(x+2y\right).\left(x-2y-2\right)\)
b) \(x^4+2x^3-4x-4=\left(x^4-4\right)+\left(2x^3-4x\right)=\left(x^2+2\right).\left(x^2-2\right)+2x.\left(x^2-2\right)\)
\(=\left(x^2-2\right).\left(x^2+2+2x\right)\)
c) \(x^2.\left(1-x\right)^2-4x-4x^2=x^2.\left(x^2-2x+1\right)-4x-4x^2=x^4-2x^3+x^2-4x-4x^2\)
\(x^4-2x^3-3x^2-4x=x.\left(x^3-2x^2-3x-4\right)\)
d) \(\left(1+2x\right).\left(1-2x\right)-x.\left(x+2\right).\left(x-2\right)=1-4x^2-x.\left(x^2-4\right)\)
\(=1-4x^2-x^3+4x=1-x^3+4x-4x^2=\left(1-x\right).\left(1+x+x^2\right)+4x.\left(1-x\right)\)
\(=\left(1-x\right).\left(1+x+x^2+4x\right)=\left(1-x\right).\left(x^2+5x+1\right)\)
e) \(x^2+y^2-x^2y^2+xy-x-y=\left(x^2-x\right)-\left(x^2y^2-y^2\right)+\left(xy-y\right)\)
\(=x.\left(x-1\right)-y^2.\left(x^2-1\right)+y.\left(x-1\right)=x.\left(x-1\right)-y^2.\left(x-1\right)\left(x+1\right)+y.\left(x-1\right)\)
\(=\left(x-1\right).\left(x-y^2.\left(x+1\right)+y\right)=\left(x-1\right).\left(x-xy^2-y^2+y\right)\)
\(=\left(x-1\right)\left[-\left(xy^2-x\right)-\left(y^2-y\right)\right]=\left(x-1\right)\left[-x\left(y^2-1\right)-y\left(y-1\right)\right]\)
\(=\left(x-1\right)\left[-x\left(y-1\right)\left(y+1\right)-y\left(y-1\right)\right]=\left(x-1\right)\left(y-1\right)\left(-x.\left(y+1\right)-y\right)\)
\(=\left(x-1\right)\left(y-1\right)\left(-xy-x-y\right)=-\left(x-1\right)\left(y-1\right)\left(xy+x+y\right)\)
Bài 1:tìm x ,biết:
a) (2x - 1)(3x + 2) - 6x(x + 1) = 0
\(\Leftrightarrow6x^2+x-2-6x^2-6x=0\)
\(\Leftrightarrow-5x=2\)
\(\Leftrightarrow x=\frac{-2}{5}\)
b) \(\left(4x-1\right)^2-\left(2x+1\right)\left(8x-3\right)=0\)
\(\Leftrightarrow16x^2-8x+1-16x^2-2x+3=0\)
\(\Leftrightarrow-10x=-4\)
\(\Leftrightarrow x=\frac{2}{5}\)
c) \(4x^2-1=2\left(2x+1\right)\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)-2\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)
2a) \(4x^2-9y^2-6y-1=4x^2-\left(3y+1\right)^2\)
\(=\left(2x-3y-1\right)\left(2x+3y+1\right)\)
b) \(4x^2-1-2x\left(2x-1\right)=\left(2x-1\right)\left(2x+1\right)-2x\left(2x-1\right)\)
\(=1.\left(2x-1\right)\)
c) \(x^2-8x-4y^2+16=\left(x-4\right)^2-4y^2\)
\(=\left(x-4-2y\right)\left(x-4+2y\right)\)
d) \(9x^2-12x-y^2+4=\left(3x-2\right)^2-y^2\)
\(=\left(3x-2-y\right)\left(3x-2+y\right)\)
e) \(4x^2+10x-5=4x^2+2.2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-5\)
\(=\left(2x+\frac{5}{2}\right)^2-\frac{45}{4}\)
\(=\left(2x+\frac{5+3\sqrt{5}}{2}\right)\left(2x+\frac{5-3\sqrt{5}}{2}\right)\)
a. x4 - 27x = x ( x3 - 33 ) = = x ( x - 3 ) ( x2 + 3x + 32 ) = x ( x - 3 ) ( x2 + 3x + 9 )
b. x3 + 2x2 + 2x + 1 = ( x3 + 13 ) + ( 2x2 + 2x ) = ( x + 1 ) ( x2 - x + 1 ) + 2x ( x + 1 ) = ( x + 1 ) ( x2 + x + 1 )
c. 4x - 4y + x2 - 2xy + y2 = 4 ( x - y ) + ( x - y )2 = ( x - y ) ( x - y + 4 )
a
\(x^4-27x\)
\(=x\left(x^3-27\right)\)
\(=x\left(x^3-3^3\right)\)
\(=x\left(x-3\right)\left(x^2+3x+9\right)\)
b
\(x^3+2x^2+2x+1\)
\(=x^3+x^2+x^2+x+x+1\)
\(=x^2\left(x+1\right)+x\left(x+1\right)+1\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
c
\(4x-4y+x^2-2xy+y^2\)
\(=4\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x-y\right)\left(x-y+4\right)\)
\(\left(2x+1\right)^2-4\left(x-1\right)^2=3\left(4x-1\right)\)
\(\left(2x+y\right)^2-4x^2+12x-9=\left(2x+y\right)^2-\left(2x-3\right)^2=\left(y+3\right)\left(4x+y-3\right)\)
\(\left(x+1\right)^2-4\left(x+1\right)\left(y^2+4y^4\right)=\left(x+1\right)\left(x-16y^4-4y^2+1\right)\)
\(a,\left(2x+1\right)^2-4\left(x-1\right)^2=\left(2x+1-2\left(x-1\right)\right)\left(2x+1+2\left(x-1\right)\right)\)
\(=\left(2x+1-2x+2\right)\left(2x+1+2x-2\right)\)
\(=3\left(4x-1\right)\)
\(b,\left(2x+y\right)^2-4x^2+12x-9=\left(2x+y\right)^2-\left(2x-3\right)^2\)
\(=\left(2x+y-2x+3\right)\left(2x+y+2x-3\right)\)
\(=\left(y+3\right)\left(4x+y-3\right)\)
\(c,\left(x+1\right)^2-4\left(x+1\right)\left(y^2+4y^4\right)=\left(x+1\right)\left(x+1-4\left(y^2+4y^4\right)\right)\)
\(=\left(x+1\right)\left(x+1-4y^2+16y^4\right)\)