Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.=x^3-2x^2+x^2-2x+x-2=x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(x^2+x+2\right)\)
b.\(=2x^3+x^2-2x^2-x-2x-1=x^2\left(2x+1\right)-x\left(2x-1\right)-\left(2x-1\right)\)\(=\left(2x-1\right)\left(x^2-x-1\right)\)
c.\(3x^3-x^2+6x^2-2x-12x+4=x^2\left(3x-1\right)+2x\left(3x-1\right)-4\left(3x-1\right)\)\(=\left(3x-1\right)\left(x^2+2x-4\right)\)
d.\(3x^3-x^2-6x^2+2x+15x-5=x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)\(=\left(3x-1\right)\left(x^2-2x+5\right)\)
t i c k cho mình nha
cháu tôi học ghê thế :))
a) 3x3 - 7x2 + 17x - 5
= 3x3 - x2 - 6x2 + 2x + 15x - 5
= x2( 3x - 1 ) - 2x( 3x - 1 ) + 5( 3x - 1 )
= ( 3x - 1 )( x2 - 2x + 5 )
b) Đặt A = a2 + ab + b2 - 3a - 3b + 3
=> 4A = 4a2 + 4ab + 4b2 - 12a - 12b + 12
= ( 4a2 + 4ab + b2 - 12a - 6b + 9 ) + ( 3b2 - 6b + 3 )
= ( 2a + b - 3 )2 + 3( b - 1 )2 ≥ 0 ∀ a, b
hay 4A ≥ 0 => A ≥ 0
Dấu "=" xảy ra <=> a = b = 1
a.
\(3x^3-7x^2+17x-5=3x^3-x^2-6x^2+2x+15x-5\)
\(=\left(3x-1\right)\left[x^2-2x+5\right]\)
b.\(a^2+ab+b^2-3a-3b+3=\left(a-1\right)^2+\left(b-1\right)^2+\left(a-1\right)\left(b-1\right)\)
\(=\left[a-1+\frac{b-1}{2}\right]^2+\frac{3}{4}\left(b-1\right)^2\ge0\)
dấu bằng xảy ra khi \(a-1=b-1=0\Leftrightarrow a=b=1\)
\(3x^3-7x^2+17x-5\)
\(=3x^3-6x^2-x^2+15x+2x-5\)
\(=\left(-6x^2+2x\right)+\left(3x^3+15x\right)-\left(x^2+5\right)\)
\(=-2x\left(3x-1\right)+3x\left(x^2+5\right)-\left(x^2+5\right)\)
\(=-2x\left(3x-1\right)+\left(x^2+5\right)\left(3x-1\right)\)
\(=\left(3x-1\right)\left(-2x+x^2+5\right)\)
3x3 - 7x2 + 17x - 5x = (3x3 - x2) + (- 6x2 + 2x) + (15x - 5)
= (3x - 1)(x2 - 6x + 5)
\(3x^3-7x^2+17x-5.\)
\(=3x^3-x^2-6x^2+2x-15x+5\)
\(=\left(3x^3-x^2\right)-\left(6x^2-2x\right)-\left(15x-5\right)\)
\(=x^2\left(3x-1\right)-2x\left(3x-1\right)-5\left(3x-1\right)\)
\(=\left(3x-1\right)\left(x^2-2x-5\right)\)