Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(x^2+8x+15\right)\left(x^2+8x+7\right)+15\)
đặt:\(^{x^2+8x+11=t}\)
ta co \(\left(t+4\right)\left(t-4\right)+15=t^2-16+15=t^2-1\)
\(=\left(t-1\right)\left(t+1\right)\Rightarrow\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)\)
\(\Rightarrow\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(C=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\) \(\left(1\right)\)
Đặt \(x^2+8x+11=t\) , khi đó
\(\left(1\right)\Leftrightarrow\left(t-4\right)\left(t+4\right)+15\)
\(=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\\ =\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)
\(C=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(t=x^2+8x+7\) thì C trở thành:
\(t\left(t+8\right)+15=t^2+8t+15\)
\(t^2+3t+5t+15=t\left(t+3\right)+5\left(t+3\right)\)
\(=\left(t+5\right)\left(t+3\right)=\left(x^2+8x+7+5\right)\left(x^2+8x+7+3\right)\)
\(=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)
tìm có mà link https://h7.net/hoi-dap/toan-8/phan-h-da-thuc-x-1-x-3-x-5-x-7-15-thanh-nhan-tu-faq257547.html
tí mình gửi qua cho
học tốt
\(B=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)(1)
Đặt \(x^2+8x+11=t\)thay vào (1) ta được :
\(\left(t-4\right)\left(t+4\right)+15\)
\(=t^2-16+15\)
\(=t^2-1\)
\(=\left(t-1\right)\left(t+1\right)\)Thay \(t=x^2+8x+11\)vào bt ta được:
\(\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+2x+6x+12\right)\)
\(=\left(x^2+8x+10\right)\left[x\left(x+2\right)+6\left(x+2\right)\right]\)
\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)
M = x9 - x7 + x6 - x5 - x4 + x3 - x2 + 1
= ( x9 - x7 ) + ( x6 - x4 ) - ( x5 - x3 ) - ( x2 - 1 )
= x7( x2 - 1 ) + x4( x2 - 1 ) - x3( x2 - 1 ) - ( x2 - 1 )
= ( x2 - 1 )( x7 + x4 - x3 - 1 )
= ( x - 1 )( x + 1 )[ x4( x3 + 1 ) - ( x3 + 1 ) ]
= ( x - 1 )( x + 1 )( x3 + 1 )( x4 - 1 )
= ( x - 1 )( x + 1 )( x + 1 )( x2 - x + 1 )( x2 - 1 )( x2 + 1 )
= ( x + 1 )2( x - 1 )( x2 - x + 1 )( x - 1 )( x + 1 )( x2 + 1 )
= ( x + 1 )3( x - 1 )2( x2 + 1 )( x2 - x + 1 )
Đặt \(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
Ta có : \(A=\left[\left(x+1\right)\left(x+7\right)\right].\left[\left(x+3\right)\left(x+5\right)\right]+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(t=x^2+8x+11\) , suy ra \(A=\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)\)
\(\Rightarrow A=\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)
f(x) = (x+1)(x+3)(x+5)(x+7)+15
= (x+1)(x+7)(x+3)(x+5)+15
= (x2+7x+x+7)(x2+5x+3x+15)+15
= (x2+8x+7)(x2+8x+15)+15
Đặt X=x2+8x+11
f(x) = (X-4)(X+4)+15
= X2-16+15
= X2-12
= (X-1)(X+1)
=> f(x)= (x2+8x+11-1)(x2+8x+11+1)
f(x) = (x2+8x+10)(x2+8x+12)
Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:
f(x) = (x2+8x+10)(x2+8x+12)
= (x2+8x+10)[(x2+2x)+(6x+12)]
= (x2+8x+10)[x(x+2)+6(x+2)]
= (x+2)(x+6)(x2+8x+10)
a) xy+3x-7y-21
=x(y+3)-7(x+3)
=(x-7)(y+3)
b)2xy-15-6x-5y
=2x(y-3)-5(-3+y)
=(2x-5)(y-3)
c)2x^2y+2xy^2-2x-2y
=2x(xy-1)+2y(xy-1)
=(2x+2y)(xy-1)
x(x+3)-5x(x-5)-5(x+3)
=(x-5)(x+3)-5x(x-5)
=(x-5)(x+3-5x)
Câu cuối mình bị nhầm dòng cuối phải là (x-5)(x+3+x-5)=(x-5)(2x-2)nha bạn
Ta có:
\(3\left(x-3\right)\left(x+7\right)-\left(x-3\right)\left(x+5\right)\)
\(=\left(x-3\right)\left[3\left(x+7\right)-\left(x+5\right)\right]\)
\(=\left(x-3\right)\left[3x+7-x-5\right]\)
\(=\left(x-3\right)\left(2x+2\right)\)
(x-3)*[3.(x+7)-(x+5)]