Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)\left(x+4\right)\left(x-2\right)\left(x+5\right)-112\)
\(=\left(x^2+3x-4\right)\left(x^2+3x-10\right)-112\)
\(=\left(x^2+3x-7+3\right)\left(x^2+3x-7-3\right)-112\)
\(=\left(x^2+3x-7\right)^2-3^2-112\)
\(=\left(x^2+3x-7\right)^2-11^2\)
\(=\left(x^2+3x-7+11\right)\left(x^2+3x-7-11\right)\)
\(=\left(x^2+3x+4\right)\left(x^2+3x-18\right)=0\)
\(=\left(x^2+3x+4\right)\left(x+6\right)\left(x-3\right)\)
(x-1)(x-2)(x+4)(x+5)-72=[(x-1)(x+4)][x-2)(x+5)]-72=(x^2+3x-4)(x^2+3x-10)-72
Đặt x^2+3x-4=t nên x^2+3x-10=t-6. Thay vào (*) ta được :
(x-1)(x-2)(x+4)(x+5)=t.(t-6)-72=t^2-6t-72=t^2-6t+9-81=(t-3)^2-9^2=(t-3-9)(t-3+9)=(t-12)(t+6)=(x^2+3x-16)(x^2+3x+2)
a) (x-2)(x+2)(x^2-10)-72=(x^2-4)(x^2-82)
b) x^8+x^6+x^4+x^2+1=x^2 (x^4+x^3+x^2+1+1/x^2)
c)(x+y)^4+x^4+y^4=(x+y)^4+(x+y)^4=2 (x+y)^4
a) (x-2)(x+2)(x^2 - 10) -72
= (x^2 - 4)(x^2 - 10) - 72
= x^4 - 4x^2 -10x^2 + 40 - 72
= x^4 - 14x^2 - 32
= x^4 - 16x^2 + 2x^2 - 32
= x^2(x^2 - 16) + 2(x^2 - 16)
= (x^2 - 16)(x^2 + 2)
= (x-4)(x+4)(x^2 + 2)
c) (x+y)4 + x4 + y4
= 2x4 + 4xy3 + 6x2y2 + 4x3y + 2y3
= 2(y4 + 2xy3 + 3x2y2 + 2x3y + x4)
= 2(y2 + xy + y2)2
\(A=\left(x-2\right)\left(x+2\right)\left(x^2-10\right)-72=\left(x^2-4\right)\left(x^2-10\right)-72=x^4-14x^2+40-72\)
\(A=x^4-14x^2-32=x^4+2x^2-16x^2-32=x^2\left(x^2+2\right)-16\left(x^2+2\right)\)
\(A=\left(x^2+2\right)\left(x^2-16\right)=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)
\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)-72\)
\(=\left(x^2-4\right)\left(x^2-10\right)-72\)
\(=x^4-10x^2-4x^2+40-72\)
\(=x^4-14x^2-32\)
\(=x^4-16x^2+2x^2-32\)
\(=\left(x^4-16x^2\right)+\left(2x^2-32\right)\)
\(=x^2\left(x^2-16\right)+2\left(x^2-16\right)\)
\(=\left(x^2+2\right)\left(x^2-16\right)\)
\(=\left(x^2+2\right)\left(x-4\right)\left(x+4\right)\)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1
=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)
=(x3-x-1)(x2-x+1)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
Đây là một dạng phân tích thừa số nguyên tố khá quen, cô sẽ hướng dẫn e nhé :) Ta cần ghép các hạng tử để xuất hiện các thành phần chứa biến giống nhau.
\(A=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=\left(4x+1\right)\left(3x+2\right)\left(12x-1\right)\left(x+1\right)-4\)
\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
Đặt \(12x^2+11x+2=t\Rightarrow A=t\left(t-3\right)-4=t^2-3t-4=\left(t-4\right)\left(t+1\right)\)
Quay lại biến x ta có: \(A=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)
Câu sau tương tự nhé :)
Câu 1:
\(\left(x-1\right)\left(x-2\right)\left(x+4\right)\left(x+5\right)-112\)
\(=\left(x-1\right)\left(x+4\right)\left(x-2\right)\left(x+5\right)-112\)
\(=\left(x^2+3x-4\right)\left(x^2+3x-10\right)-112\)
\(=\left(x^2+3x-7\right)^2-3^2-112\)
\(=\left(x^2+3x-7\right)^2-11^2\)
\(=\left(x^2+3x+4\right)\left(x^2+3x-18\right)\)
\(=\left(x^2+3x+4\right)\left(x+6\right)\left(x-3\right)\)
Câu 2:
\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)-72\)
\(=\left(x^2-4\right)\left(x^2-10\right)-2\)
\(=\left(x^2-7\right)^2-3^2-72\)
\(=\left(x^2-7\right)^2-81\)
\(=\left(x^2-16\right)\left(x^2+2\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)
(x−1)(x−2)(x+4)(x+5)−112
=(x−1)(x+4)(x−2)(x+5)−112
=(x^2+3x−4)(x^2+3x−10)−112
=(x^2+3x−7)^2−32−112
=(x^2+3x−7)^2−112
=(x^2+3x+4)(x^2+3x−18)
=(x^2+3x+4)(x+6)(x−3)
Câu 2:
(x−2)(x+2)(x^2−10)−72
=(x2−4)(x^2−10)−2
=(x^2−7)^2−32−72