K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2016

a) \(x^8+x+1\)

\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

b) \(x^4+2008x^2+2007x+2008\)

\(=x^4+x^3+x^2-x^3-x^2-x+2008x^2+2008x+2008\)

\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)

2 tháng 11 2018

\(x^8+x+1\)

\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

18 tháng 6 2018

       x4+2008x2+2007x+2008

<=> x4-x+2008x2+2008x+2008

<=> x(x3-1)+2008(x2+x+1)

<=> x(x-1)(x2+x+1)+2008(x2+x+1)

<=> (x2+x+1)(x2-x+2008)

14 tháng 2 2016

x^4+2008x^2+2007x+2008

=x^4+2008x^2+2008x-x+2008

=(x^4-x)+(2008x^2+2008x+2008)

=x(x^3-1)+2008(x^2+x+1)

=x(x-1)(x^2+x+1)+2008(x^2+x+1)

=(x^2+x+1)(x^2-x+2008)

14 tháng 3 2015

\(\left(x^4+x^2+1\right)+\left(2007x^2+2007x+2007\right)\)

=\(\left(x^2+x+1\right)\left(x^2-x+1\right)+2007\left(x^2+x+1\right)\)

=\(\left(x^2+x+1\right)\left(x^2-x+2008\right)\)

29 tháng 12 2017

x4_x+2008(x2+x+1)=x(x-1)(x2+x+1)+2008(x2+x+1)=(x2-x+2008)(x2+x+1)

5 tháng 12 2017

=x4+2008x2+2008x-x+2008

=(x4-x)+(2008x2+2008x+2008)

=x(x3-1)+2008(x2+x+1)

=x(x-1)(x2+x+1)+2008(x2+x+1)

=(x2+x++1)(x2-x+2008)

28 tháng 8 2016

http://olm.vn/hoi-dap/question/684622.html

Bạn có thể học hỏi ở đó

tíck mik nha

3 tháng 7 2019

\(x^8+3x^4+4\)

\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)

\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)

\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)

3 tháng 7 2019

\(4x^4+4x^3+5x^2+2x+1\)

\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)

\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)

\(=\left(2x^2+x+1\right)^2\)

24 tháng 3 2019

a)\(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-\left(x^2\right)^2\)

\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)

24 tháng 3 2019

\(=\left(x^4+x^3+x^2\right)-\left(x^3-2007x^2-2007x-2008\right)\)

\(=x^2\left(x^2+x+1\right)-\left[x\left(x^2+x+1\right)-2008\left(x^2-x-1\right)\right]\)

\(=x^2\left(x^2+x+1\right)-\left(x^2+x+1\right)\left(x-2008\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)

2 tháng 3 2018

\(A=x^5-x^4+3x^3+3x^2-x+1\)

\(A=\left(x^5+x^4\right)+\left(-2x^4-2x^3\right)+\left(5x^3+5x^2\right)+\left(-2x^2-2x\right)+\left(x+1\right)\)

\(A=x^4\left(x+1\right)-2x^3\left(x+1\right)+5x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)

\(A=\left(x+1\right)\left(x^4+2x^3+5x^2-2x+1\right)\)

1 tháng 3 2018

\(x^4+2008x^2+2007x+2008\)

\(=x^4+2008x^2+2008x-x+2008\)

\(=x\left(x^3-1\right)+2008\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)