K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2020

8a3 - 36a2b + 54ab2 - 27b3 - 8 

= ( 8a3 - 36a2b + 54ab2 - 27b3 ) - 8 

= ( 2a - 3b )3 - 23

= ( 2a - 3b - 2 )[ ( 2a - 3b )2 + 2( 2a - 3b ) + 4 ]

= ( 2a - 3b - 2 )( 4a2 - 12ab + 9b2 + 4a - 6b + 4 )

4 tháng 12 2020

Giúp tui vs

10 tháng 8 2016

a)\(\left(a^3-b^3\right)+\left(a-b\right)^2\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)

\(\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)

b) \(\left(8a^3-27b^3\right)-2a\left(4a^2-9b^2\right)\)

\(=\left(2a-3b\right)\left(4a^2+6ab+9b^2\right)-2a\left(2a-3b\right)\left(2a+3b\right)\)

\(=\left(2a-3b\right)\left(4a^2+6ab+9b^2-4a^2-6ab\right)\)

\(=\left(2a-3b\right)\cdot9b^2\)

 

 

10 tháng 8 2016

\(=\left(a-b\right)\left(a^2+ab+b^2\right)+a^2-2ab+b^2\)

= ...........

6 tháng 1 2019

\(4a^4b-24a^3b^2+36a^2b^3\)

\(=4a^2b\left(a^2-6ab+9b^2\right)\)

\(=4a^2b\left[a^2-2.a.3b+3b^2\right]\)

\(=4a^2b\left(a-3b\right)^2\)

6 tháng 1 2019

\(4a^4b-24a^3b^2+36a^2b^3\)

\(=4a^2b\left(a^2-6ab+9b^2\right)\)

\(=4a^2b\left[a^2-2\cdot a\cdot3b+\left(3b\right)^2\right]\)

\(=4a^2b\left(a-3b\right)^2\)

16 tháng 7 2019

\(\left(2a+b\right)^2-\left(2a+a\right)^2\)

\(=\left(2a+b-2a-a\right)\left(2a+b+2a+a\right)\)

\(=\left(b-a\right)\left(5a+b\right)\)

16 tháng 7 2019

\(\left(2a+b\right)^2-\left(2a+a\right)^2\)

\(=\left(2a+b\right)^2-\left(3a\right)^2\)

\(=\left(2a+b-3a\right)\left(2a+b+3a\right)\)

\(=\left(b-a\right)\left(5a+b\right)\)

7 tháng 8 2018

\(9x^2+24xy+16y^2\)

\(=\left(3x\right)^2+2\cdot3x\cdot4y+\left(4y\right)^2\)

\(=\left(3x+4y\right)^2\)

\(8x^3+1=\left(2x\right)^3+1^3\)

\(=\left(2x+1\right)\left(4x^2+2x+1\right)\)

\(a^4-b^4=\left(a^2-b^2\right)\left(a^2+b^2\right)=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\)

\(\left(a^2+9\right)^2-36a^2\)

\(=\left(a^2+9-6a\right)\left(a^2+9+6a\right)\)

\(=\left(x-3\right)^2\left(x+3\right)^2\)

8 tháng 9 2017

x9 + 1
= (x3)3 + 13
= (x3 + 1)(x6 - x3 + 1)
= (x + 1)(x2 - x + 1)(x6 - x3 +1)

8a3 - 12a2 + 6a - 1
= (2a)3 - 3(2a)21 + 3 . 2a . 12 - 1
= (2a - 1)3

27a3 - 54a2b + 36ab2 - 8b3
= (3a)3 - 3(3a)22b + 3 . 3a . (2b)2 - (2b)3
= (3a - 2b)3

15 tháng 10 2015

64-96a+48a2-8a^3= 43 - 3.42.21 +3.4.(2a)2 - (2a)3= (4-2a)3

15 tháng 10 2015

a) (4- 2a)3

 

22 tháng 3 2020

\(a^4+8a^3+14a^2-8a-15\)

\(a^4-a^3+9a^3-9a^2+23a^2-23a+15a-15\)

\(a^3\left(a-1\right)+9a^2\left(a-1\right)-23a\left(a-1\right)+15\left(a-1\right)\)

\(\left(a-1\right)\left(a^3+9a^2-23a+15\right)\)

20 tháng 7 2016

a)\(36-4a^2+20ab-25b^2=6^2-\left(4a^2-20ab+25b^2\right)\)

\(=6^2-\left[\left(2a\right)^2-2.2a.5b+\left(5b\right)^2\right]\)

\(=6^2-\left(2a-5b\right)^2\)

\(=\left(6-2a+5b\right)\left(6+2a-5b\right)\)

b)\(a^3+3a^2+3a+1-27b^3=\left(a+1\right)^3-\left(3b\right)^3\)(chỗ này mình sửa 27b2 thành 27b3 vì mình nghĩ nhầm đề)

\(=\left(a+1-3b\right)\left[\left(a+1\right)^2+\left(a+1\right)3b+\left(3b\right)^2\right]\)

\(=\left(a+1-3b\right)\left(a^2+2a+1+3ab+3b+9b^2\right)\)

c)\(x^3+3x^2+3x+1-3x^2-3x=\left(x+1\right)^3-3x\left(x+1\right)\)

\(=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)

\(=\left(x+1\right)\left(x^2+2x+1-3x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)\)

20 tháng 7 2016

a)  36-4a2+20ab-25b2

= 6^2 - (4a^2 - 20xb + 25b^2)

= 6^2 - (2a - 5b)^2

= [6 - (2a - 5b)] [6 + (2a - 5b)]

= (6 - 2a + 5b) (6 + 2a -5b)