Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4+2008x2+2007x+2008
<=> x4-x+2008x2+2008x+2008
<=> x(x3-1)+2008(x2+x+1)
<=> x(x-1)(x2+x+1)+2008(x2+x+1)
<=> (x2+x+1)(x2-x+2008)
x^4+2008x^2+2007x+2008
=x^4+2008x^2+2008x-x+2008
=(x^4-x)+(2008x^2+2008x+2008)
=x(x^3-1)+2008(x^2+x+1)
=x(x-1)(x^2+x+1)+2008(x^2+x+1)
=(x^2+x+1)(x^2-x+2008)
\(\left(x^4+x^2+1\right)+\left(2007x^2+2007x+2007\right)\)
=\(\left(x^2+x+1\right)\left(x^2-x+1\right)+2007\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
=x4+2008x2+2008x-x+2008
=(x4-x)+(2008x2+2008x+2008)
=x(x3-1)+2008(x2+x+1)
=x(x-1)(x2+x+1)+2008(x2+x+1)
=(x2+x++1)(x2-x+2008)
a) \(x^8+x+1\)
\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
b) \(x^4+2008x^2+2007x+2008\)
\(=x^4+x^3+x^2-x^3-x^2-x+2008x^2+2008x+2008\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
a) \(x^2+4\)
\(=x^2+4+4x-4x\)
\(=\left(x^2+2.x.2+2^2\right)-4x\)
\(=\left(x+2\right)^2-\left(2\sqrt{x}\right)^2\)
\(=\left(x+2-2\sqrt{x}\right)\left(x+2+2\sqrt{x}\right)\)
c) \(x^2+7x+6\)
\(=x^2+x+6x+6\)
\(=\left(x^2+x\right)+\left(6x+6\right)\)
\(=x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x+6\right)\)
d) \(x^4+2008x^2+2007x+2008\)
\(=x^4+2008x^2+2008x-x+2008\)
\(=\left(x^4-x\right)+\left(2008x^2+2008x+2008\right)\)
\(=x\left(x^3-1\right)+2008\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2008\right]\)
\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
a)x4+4
=x4+4x2+4-4x2
=(x4+4x2+4)-4x2
=(x2+2)2-4x2
=(x2+2-2x)(x2+2+2x)
b)(x+2)(x+3)(x+4)(x+5)-24
=[(x+2)(x+5)][x+3)(x+4)]-24
=(x2+5x+2x+10)(x2+4x+3x+12)-24
=(x2+7x+10)(x2+7x+12)-24
=Đặt x2+7x+10=a ta có
a(a+2)-24
=a2+2a-24
=a2+6a-4a-24
=(a2+6a)-(4a+24)
=a(a+6)-4(a+6)
=(a+6)(a-4)
thay a=x2+7x+10
(x2+7x+10+6)(x2+7x+10-4)
=(x2+7x+16)(x2+7x+6)
=(x2+7x+16)(x2+x+6x+6)
=(x2+7x+16)[(x2+x)+(6x+6)]
=(x2+7x+16)[x(x+1)+6(x+1)]
=(x2+7x+16)(x+1)(x+6)
c)x2+7x+6
=x2+x+6x+6
=(x2+x)+(6x+6)
=x(x+1)+6(x+1)
=(x+1)(x+6)
\(A=x^5-x^4+3x^3+3x^2-x+1\)
\(A=\left(x^5+x^4\right)+\left(-2x^4-2x^3\right)+\left(5x^3+5x^2\right)+\left(-2x^2-2x\right)+\left(x+1\right)\)
\(A=x^4\left(x+1\right)-2x^3\left(x+1\right)+5x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)
\(A=\left(x+1\right)\left(x^4+2x^3+5x^2-2x+1\right)\)
\(x^4+2008x^2+2007x+2008\)
\(=x^4+2008x^2+2008x-x+2008\)
\(=x\left(x^3-1\right)+2008\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)