K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

\(A=x^5-x^4+3x^3+3x^2-x+1\)

\(A=\left(x^5+x^4\right)+\left(-2x^4-2x^3\right)+\left(5x^3+5x^2\right)+\left(-2x^2-2x\right)+\left(x+1\right)\)

\(A=x^4\left(x+1\right)-2x^3\left(x+1\right)+5x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)

\(A=\left(x+1\right)\left(x^4+2x^3+5x^2-2x+1\right)\)

1 tháng 3 2018

\(x^4+2008x^2+2007x+2008\)

\(=x^4+2008x^2+2008x-x+2008\)

\(=x\left(x^3-1\right)+2008\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)

18 tháng 6 2018

       x4+2008x2+2007x+2008

<=> x4-x+2008x2+2008x+2008

<=> x(x3-1)+2008(x2+x+1)

<=> x(x-1)(x2+x+1)+2008(x2+x+1)

<=> (x2+x+1)(x2-x+2008)

14 tháng 2 2016

x^4+2008x^2+2007x+2008

=x^4+2008x^2+2008x-x+2008

=(x^4-x)+(2008x^2+2008x+2008)

=x(x^3-1)+2008(x^2+x+1)

=x(x-1)(x^2+x+1)+2008(x^2+x+1)

=(x^2+x+1)(x^2-x+2008)

14 tháng 3 2015

\(\left(x^4+x^2+1\right)+\left(2007x^2+2007x+2007\right)\)

=\(\left(x^2+x+1\right)\left(x^2-x+1\right)+2007\left(x^2+x+1\right)\)

=\(\left(x^2+x+1\right)\left(x^2-x+2008\right)\)

29 tháng 12 2017

x4_x+2008(x2+x+1)=x(x-1)(x2+x+1)+2008(x2+x+1)=(x2-x+2008)(x2+x+1)

5 tháng 12 2017

=x4+2008x2+2008x-x+2008

=(x4-x)+(2008x2+2008x+2008)

=x(x3-1)+2008(x2+x+1)

=x(x-1)(x2+x+1)+2008(x2+x+1)

=(x2+x++1)(x2-x+2008)

28 tháng 8 2016

http://olm.vn/hoi-dap/question/684622.html

Bạn có thể học hỏi ở đó

tíck mik nha

7 tháng 10 2016

a) \(x^8+x+1\)

\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

b) \(x^4+2008x^2+2007x+2008\)

\(=x^4+x^3+x^2-x^3-x^2-x+2008x^2+2008x+2008\)

\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)

2 tháng 11 2018

\(x^8+x+1\)

\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

25 tháng 11 2017

a) \(x^2+4\)

\(=x^2+4+4x-4x\)

\(=\left(x^2+2.x.2+2^2\right)-4x\)

\(=\left(x+2\right)^2-\left(2\sqrt{x}\right)^2\)

\(=\left(x+2-2\sqrt{x}\right)\left(x+2+2\sqrt{x}\right)\)

c) \(x^2+7x+6\)

\(=x^2+x+6x+6\)

\(=\left(x^2+x\right)+\left(6x+6\right)\)

\(=x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x+6\right)\)

d) \(x^4+2008x^2+2007x+2008\)

\(=x^4+2008x^2+2008x-x+2008\)

\(=\left(x^4-x\right)+\left(2008x^2+2008x+2008\right)\)

\(=x\left(x^3-1\right)+2008\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2008\right]\)

\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)

25 tháng 11 2017

a)x4+4

=x4+4x2+4-4x2

=(x4+4x2+4)-4x2

=(x2+2)2-4x2

=(x2+2-2x)(x2+2+2x)

b)(x+2)(x+3)(x+4)(x+5)-24

=[(x+2)(x+5)][x+3)(x+4)]-24

=(x2+5x+2x+10)(x2+4x+3x+12)-24

=(x2+7x+10)(x2+7x+12)-24

=Đặt x2+7x+10=a ta có

a(a+2)-24

=a2+2a-24

=a2+6a-4a-24

=(a2+6a)-(4a+24)

=a(a+6)-4(a+6)

=(a+6)(a-4)

thay a=x2+7x+10

(x2+7x+10+6)(x2+7x+10-4)

=(x2+7x+16)(x2+7x+6)

=(x2+7x+16)(x2+x+6x+6)

=(x2+7x+16)[(x2+x)+(6x+6)]

=(x2+7x+16)[x(x+1)+6(x+1)]

=(x2+7x+16)(x+1)(x+6)

c)x2+7x+6

=x2+x+6x+6

=(x2+x)+(6x+6)

=x(x+1)+6(x+1)

=(x+1)(x+6)