Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^8y^8+x^4y^4+1=\left[\left(x^4y^4\right)^2+2x^4y^4+1\right]-x^4y^4=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2\)
\(=\left(x^4y^4+1-x^2y^2\right)\left(x^4y^4+1+x^2y^2\right)\)
\(=\left(x^4y^4+1-x^2y^2\right)\left[\left(x^2y^2\right)^2+2x^2y^2+1-x^2y^2\right]\)
\(=\left(x^4y^4+1-x^2y^2\right)\left[\left(x^2y^2+1\right)^2-\left(xy\right)^2\right]\)
\(=\left(x^4y^4+1-x^2y^2\right)\left(x^2y^2+1-xy\right)\left(x^2y^2+1+xy\right)\)
Phân tích đa thức thành nhân tử
x3+3x2y−9xy2+5y2
x8y8+x4y4+1
Bài làm:
1) Ta có: \(2x^2+5xy+2y^2\)
\(=\left(2x^2+4xy\right)+\left(xy+2y^2\right)\)
\(=2x\left(x+2y\right)+y\left(x+2y\right)\)
\(=\left(2x+y\right)\left(x+2y\right)\)
2) Ta có: \(2x^2+2xy-4y^2\)
\(=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)\)
\(=2x\left(x-y\right)+4y\left(x-y\right)\)
\(=2\left(x+2y\right)\left(x-y\right)\)
\(1)2x^2+5xy+2y^2=2x^2+4xy+xy+2y^2=\left(2x^2+4xy\right)+\left(xy+2y^2\right)=2x\left(x+2y\right)+y\left(x+2y\right)=\left(2x+y\right)\left(x+2y\right)\)\(2)2x^2+2xy-4y^2=2x^2+4xy-2xy-4y^2=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)=2x\left(x-y\right)+4y\left(x-y\right)=\left(2x+4y\right)\left(x-y\right)\)
\(x^4+y^2-2x^2y+x^2+2x-2y\)
\(=\left(y^2-x^2y-xy\right)-\left(x^2y-x^4-x^3\right)+\left(xy-x^3-x^2\right)-\left(2y-2x^2-2x\right)\)
\(=y\left(y-x^2-x\right)-x^2\left(y-x^2-x\right)+x\left(y-x^2-x\right)-2\left(y-x^2-x\right)\)
\(=\left(y-x^2+x-2\right)\left(y-x^2-x\right)\)
A = x^2 + y^2 + 2xy - 2x -2y +1
= (x+y)^2 -2.(x+y) + 1
=(x+y -1 )^2
a) \(x^3-3x+1-3x^2=\left(x^3+1\right)-\left(3x^2+3x\right)=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1-3x\right)=\left(x+1\right)\left(x^2-4x+1\right)\)
b) \(2x^2+4x+2-2y^2=2\left(x^2+2x+1-y^2\right)=2\left[\left(x+1\right)^2-y^2\right]=2\left(x+1+y\right)\left(x+1-y\right)\)
a)\(x^2-y^2-2y-1=x^2-\left(y^2+2y+1\right)=x^2-\left(y+1\right)^2=\left(x-y-1\right)\left(x+y+1\right)\)
b)\(x^2.\left(1-x^2\right)-4+4x^2=x^2.\left(1-x^2\right)-4.\left(1-x^2\right)=\left(1-x^2\right).\left(x^2-2^2\right)\)\(=\left(1-x\right).\left(1+x\right).\left(x-2\right).\left(x+2\right)\)
Tham khảo nhé~
\((x^2y^2-8)^2-1\\=(x^2y^2-8)^2-1^2\\=(x^2y^2-8-1)(x^2y^2-8+1)\\=(x^2y^2-9)(x^2y^2-7)\\=[(xy)^2-3^2](x^2y^2-7)\\=(xy-3)(xy+3)(x^2y^2-7)\)
`#3107.101107`
`(x^2y^2 - 8)^2 - 1`
`= (x^2y^2 - 8)^2 - 1^2`
`= (x^2y^2 - 8 - 1)(x^2y^2 - 8 + 1)`
`= (x^2y^2 - 9)(x^2y^2 - 7)`
`= (x^2y^2 - 3^2)(x^2y^2 - 7)`
`= (xy - 3)(xy + 3)(x^2y^2 - 7)`
____
Sử dụng hđt:
`A^2 - B^2 = (A - B)(A + B).`