Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+y\right)^3-x^3-y^3\)
\(=\left(x+y\right)^3-\left(x^3+y^3\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)
\(=3xy\left(x+y\right)\)
a, Ta có: \(B=x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2\)
\(=x^4+y^4+z^4-2x^2y^2-2z^2x^2+2y^2z^2-4y^2z^2\)
\(=\left(x^2-y^2-z^2\right)^2-4y^2z^2\) \(=\left(x^2-y^2-z^2-2yz\right)\left(x^2-y^2-z^2+2yz\right)\)
\(=\left[x^2-\left(y+z\right)^2\right]\left[x^2-\left(y-z\right)^2\right]\)
\(=\left(x-y-z\right)\left(x+y+z\right)\left(x-y+z\right)\left(x+y-z\right)\)
b, Nếu x,y,z là ba cạnh tam giác. áp dụng BĐT tam giác ta có:
\(x-y-z=x-\left(y+z\right)< 0\)
\(\hept{\begin{cases}x+y+z>0\\x+z-y>0\\x+y-z>0\end{cases}}\)
=> B < 0 => đpcm
Trả lời cho mình câu này nữa nhé
https://olm.vn/hoi-dap/question/1115850.html
A= x4 + 64
A= (x2)2 + 2.x2.8 +82 - (2.x2 .8)
A=(x2+8)2 -16x2
A =(x2+8+4x).(x2+8-4x)
-
G=(x2+y2+z2)2 (có sẵn hdt rồi mak_)
x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz
=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz
=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz
=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3
=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]
=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)
=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]
=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]
=(x+y+z)(x-y-z)(z-x-y)