Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(1+x\right)^2+\left(1-x\right)^2\)
\(=1+2x+x^2+1-2x+x^2\)
\(=2x^2+2\)
b) \(\left(x+2\right)^2+\left(1+x\right)\left(1-x\right)\)
\(=x^2+4x+4+1-x^2\)
\(=4x+5\)
c) \(\left(x-3\right)^2+3\left(x+1\right)^2\)
\(=x^2-6x+9+3x^2+6x+3\)
\(=4x^2+12\)
d)\(\left(2+3x\right)\left(3x-2\right)-\left(3x+1\right)^2\)
\(=9x^2-4-9x^2-6x-1\)
\(=-6x-5\)
e) \(\left(x+5\right)\left(x-2\right)-\left(x+2\right)^2\)
\(=x^2-2x+5x-10-x^2-4x-4\)
\(=-x-14\)
f) \(\left(x+3\right)\left(2x-5\right)-2\left(1+x\right)^2\)
\(=2x^2-5x+6x-15-2-4x-2x^2\)
\(=-3x-17\)
g) \(\left(4x-1\right)\left(4x+1\right)-4\left(1-2x\right)^2\)
\(=16x^2-1-4+16x-16x^2\)
\(=16x-5\)
#Học tốt!
Bài 1 :
a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)
b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)
c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)
d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)
e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)
Bài 1 :
f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)
g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)
h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)
b)\(\left(x^2-8\right)^2+36\)
\(=x^4-16x^2+100\)
\(=x^4+20x^2+100-36x^2\)
\(=\left(x^2+10\right)^2-36x^2\)
\(=\left(x^2-6x+10\right)\left(x^2+6x+10\right)\)
c)81x4+4
=81x4+36x2+4-36x2
=(9x2+2)2-(6x)2
=(9x2+6x+2)(9x2-6x+2)
b)(x2+x+1)(x2+x+2)-12
Đặt t=x2+x+1
t(t+1)-12=t2+t-12
=(t-3)(t+4)=(x2+x+1-3)(x2+x+1+4)
=(x2+x-2)(x2+x+5)
=(x-1)(x+2)(x2+x+5)
c)(x2+8x+7)(x2+8x+15)+15
Đặt t=x2+8x+7
t(t+8)+15=t2+8t+15
=(t+3)(t+5)
=(x2+8x+7+3)(x2+8x+7+15)
=(x2+8x+10)(x2+8x+22)
d)(x+2)(x+3)(x+4)(x+5)-24
=(x2+7x+10)(x2+7x+12)-24
Đặt t=x2+7x+10
t(t+2)-24=(t-4)(t+6)
=(x2+7x+10-4)(x2+7x+10+6)
=(x2+7x+6)(x2+7x+16)
=(x+1)(x+6)(x2+7x+16)
a/ Đặt x2 + 4x + 8 = a
Thì đa thức ban đầu thành
a2 + 3ax + 2x2 = (a2 + 2ax + x2) + (ax + x2)
= (a + x)2 + x(a + x) = (a + x)(a + 2x)
a)
\((x^2+x)^2+3(x^2+x)+2\)
\(=(x^2+x)^2+(x^2+x)+2(x^2+x)+2\)
\(=(x^2+x)(x^2+x+1)+2(x^2+x+1)\)
\(=(x^2+x+2)(x^2+x+1)\)
b) \(x(x+1)(x+2)(x+3)+1\)
\(=[x(x+3)][(x+1)(x+2)]+1\)
\(=(x^2+3x)(x^2+3x+2)+1\)
\(=(x^2+3x)^2+2(x^2+3x)+1\)
\(=(x^2+3x+1)^2\)
c) \((x^2+x+1)(x^2+3x+1)+x^2\)
\(=(x^2+x+1)[(x^2+x+1)+2x]+x^2\)
\(=(x^2+x+1)^2+2x(x^2+x+1)+x^2\)
\(=(x^2+x+1+x)^2\)
\(=(x^2+2x+1)^2=[(x+1)^2]^2=(x+1)^4\)
d) \((x^2+1)^2-4x(1-x^2)\)
\(=(x^2+1)^2+4x(x^2-1)\)
\(=(x^2+1)^2+(x-1)(4x^2+4x)\)
\(=(x^2+1)^2+(x-1)[4x^2+4+(4x-4)]\)
\(=(x^2+1)^2+(4x^2+4)(x-1)+(4x-4)(x-1)\)
\(=(x^2+1)^2+2(x^2+1)(2x-2)+(2x-2)^2\)
\(=(x^2+1+2x-2)^2=(x^2+2x-1)^2\)